Comparison of Machine Leaning Models for Prediction of Acute Pain Severity and On-Treatment Opioid Utilization in Oral Cavity and Oropharyngeal Cancer Patients Receiving Radiation Therapy: Exploratory Analysis from a Large-Scale Retrospective Cohort.

Autor: Salama V, Humbert-Vidan L, Godinich B, Wahid KA, ElHabashy DM, Naser MA, He R, Mohamed ASR, Sahli AJ, Hutcheson KA, Gunn GB, Rosenthal DI, Fuller CD, Moreno AC
Jazyk: angličtina
Zdroj: MedRxiv : the preprint server for health sciences [medRxiv] 2024 Feb 08. Date of Electronic Publication: 2024 Feb 08.
DOI: 10.1101/2024.02.06.24302341
Abstrakt: Background: Acute pain is a common and debilitating symptom experienced by oral cavity and oropharyngeal cancer (OC/OPC) patients undergoing radiation therapy (RT). Uncontrolled pain can result in opioid overuse and increased risks of long-term opioid dependence. The specific aim of this exploratory analysis was the prediction of severe acute pain and opioid use in the acute on-treatment setting, to develop risk-stratification models for pragmatic clinical trials.
Materials and Methods: A retrospective study was conducted on 900 OC/OPC patients treated with RT during 2017 to 2023. Clinical data including demographics, tumor data, pain scores and medication data were extracted from patient records. On-treatment pain intensity scores were assessed using a numeric rating scale (0-none, 10-worst) and total opioid doses were calculated using morphine equivalent daily dose (MEDD) conversion factors. Analgesics efficacy was assessed based on the combined pain intensity and the total required MEDD. ML models, including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Model (GBM) were developed and validated using ten-fold cross-validation. Performance of models were evaluated using discrimination and calibration metrics. Feature importance was investigated using bootstrap and permutation techniques.
Results: For predicting acute pain intensity, the GBM demonstrated superior area under the receiver operating curve (AUC) (0.71), recall (0.39), and F1 score (0.48). For predicting the total MEDD, LR outperformed other models in the AUC (0.67). For predicting the analgesics efficacy, SVM achieved the highest specificity (0.97), and best calibration (ECE of 0.06), while RF and GBM achieved the same highest AUC, 0.68. RF model emerged as the best calibrated model with ECE of 0.02 for pain intensity prediction and 0.05 for MEDD prediction. Baseline pain scores and vital signs demonstrated the most contributed features for the different predictive models.
Conclusion: These ML models are promising in predicting end-of-treatment acute pain and opioid requirements and analgesics efficacy in OC/OPC patients undergoing RT. Baseline pain score, vital sign changes were identified as crucial predictors. Implementation of these models in clinical practice could facilitate early risk stratification and personalized pain management. Prospective multicentric studies and external validation are essential for further refinement and generalizability.
Databáze: MEDLINE