Formation and control of disinfection by-products during the trichloroisocyanuric acid disinfection in swimming pool water.
Autor: | Peng F; Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China., Wang Y; Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China., Lu Y; Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China., Yang Z; Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China., Li H; Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China. Electronic address: lihaipu@csu.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | Environmental pollution (Barking, Essex : 1987) [Environ Pollut] 2024 Apr 01; Vol. 346, pp. 123536. Date of Electronic Publication: 2024 Feb 14. |
DOI: | 10.1016/j.envpol.2024.123536 |
Abstrakt: | The increasing demand for trichloroisocyanuric acid (TCCA) in swimming pool disinfection highlights the need to evaluate its applicability in terms of disinfection by-product (DBP) formation. Nevertheless, there is limited understanding of DBP formation and control during TCCA disinfection, particularly concerning the effects of various management parameters. This study aimed to fill this knowledge gap by comprehensively investigating DBP formation during TCCA chlorination, with a particular focus on assessing the contribution and interaction of influencing factors using Box-Behnken Design and response surface methodology. Results indicated that the concentrations of trichloroacetaldehyde, chloroform, dichloroacetic acid, trichloroacetic acid, and dichloroacetonitrile produced by TCCA disinfectant were 42.5%, 74.0%, 48.1%, 94.7% and 42.6% of those by the conventional sodium hypochlorite disinfectant, respectively. Temperature exhibited the most significant impact on chloroform formation (49%), while pH played a major role in trichloroacetaldehyde formation (44%). pH 2 emerged as the primary contributor to dichloroacetic acid (90%) and trichloroacetic acid (93%) formation. The optimum water quality conditions were determined based on the minimum total DBPs (pH = 7.32, Temperature = 23.7 °C, [Cl - ] = 437 mg/L). Chlorine dosage and contact time exhibited greater influence than precursor concentration on chloroform, dichloroacetonitrile, trichloroacetaldehyde, trichloroacetic acid, and total DBPs. Although the interaction between water quality parameters was weak, the interaction between disinfection operating parameters demonstrated substantial effects on DBP formation (8.56-19.06%). Furthermore, the DBP predictive models during TCCA disinfection were provided for the first time, which provides valuable insights for DBP control and early warning programs. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier Ltd. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |