Effects of redox on the phosphorus removal ability of iron-rich phosphorus sorption materials.

Autor: Scott ISPC; Northwest Irrigation and Soils Research Laboratory, 3793 North 3600 East, Kimberly, 83301, Idaho, United States. Electronic address: isis.p.scott@outlook.com., Penn CJ; National Soil Erosion Research Laboratory, 275 South Russell Street, West Lafayette, 47907, Indiana, United States.
Jazyk: angličtina
Zdroj: Chemosphere [Chemosphere] 2024 Mar; Vol. 352, pp. 141416. Date of Electronic Publication: 2024 Feb 14.
DOI: 10.1016/j.chemosphere.2024.141416
Abstrakt: Iron-rich phosphorus (P) sorption materials (PSMs) are often used in P removal structures, a best management practice able to sequester dissolved P from surface runoff, subsurface drainage, and wastewater. The use of bottom-upward flow in these structures is of great interest, but it creates an intrinsic complication: the presence of stagnant water between flow events may cause structures to develop anoxic conditions. It is unknown whether the redox sensitivity of iron (Fe), the predominant element in Fe-rich PSMs, will affect P binding under anoxic conditions. Understanding the potential impact of intermittent anoxic conditions on the solubility of previously adsorbed P is imperative for determining the feasibility of the bottom-up flow design. The objective of this research was to investigate the (1) development of anoxic conditions in the presence of Fe-rich PSM and tile drainage, (2) Fe-bound P mobilization and solubility, and (3) changes in P sorption capacity of Fe-rich PSMs after oxic conditions are restored. Three Fe-rich PSMs were tested in batch incubation studies: acid mine drainage residual, Fe-coated alumina, and steel metal shavings. Non-treated and P-treated PSM samples were incubated in biogeochemical reactors for as long as necessary to reach Eh = -200 mV. After incubation, dissolved P concentrations in P-treated samples and non-treated samples were similarly low, indicating stability of P retention of PSMs under anoxic conditions. The P removal ability of non-treated PSMs before and after undergoing incubation was not significantly altered, as determined in flow-through experiments. Potentially harmful trace metals were not detected in the incubated solutions. Our research shows that the development of anoxic conditions does not significantly impact PSMs Fe-bound P dissolution, and the P removal ability of PSMs persists after oxic conditions are reestablished.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE