Flexible metallic core-shell nanostructured electrodes for neural interfacing.

Autor: Rodilla BL; Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain.; Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias S/N, 28040, Madrid, Spain., Arché-Núñez A; Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain., Ruiz-Gómez S; Max Planck Institute for Chemical Physics of Solids, Dresden, Germany., Domínguez-Bajo A; Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.; Animal Molecular and Cellular Biology group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Place Croix du Sud 5, 1348 , Louvain la Neuve, Belgium., Fernández-González C; Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain., Guillén-Colomer C; Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain., González-Mayorga A; Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda S/N, 45071, Toledo, Spain., Rodríguez-Díez N; Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain., Camarero J; Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain.; Department de Física de la Materia Condensada and Instituto 'Nicolás Cabrera', Universidad Autónoma de Madrid, 28049, Madrid, Spain., Miranda R; Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain.; Department de Física de la Materia Condensada and Instituto 'Nicolás Cabrera', Universidad Autónoma de Madrid, 28049, Madrid, Spain., López-Dolado E; Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda S/N, 45071, Toledo, Spain.; Design and development of Biomaterials for Neural Regeneration, HNP-SESCAM, Associated Unit With CSIC Through ICMM, Finca La Peraleda S/N, 45071, Toledo, Spain., Ocón P; Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049, Madrid, Spain., Serrano MC; Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain., Pérez L; Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain.; Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias S/N, 28040, Madrid, Spain., González MT; Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain. teresa.gonzalez@imdea.org.
Jazyk: angličtina
Zdroj: Scientific reports [Sci Rep] 2024 Feb 14; Vol. 14 (1), pp. 3729. Date of Electronic Publication: 2024 Feb 14.
DOI: 10.1038/s41598-024-53719-4
Abstrakt: Electrodes with nanostructured surface have emerged as promising low-impedance neural interfaces that can avoid the charge-injection restrictions typically associated to microelectrodes. In this work, we propose a novel approximation, based on a two-step template assisted electrodeposition technique, to obtain flexible nanostructured electrodes coated with core-shell Ni-Au vertical nanowires. These nanowires benefit from biocompatibility of the Au shell exposed to the environment and the mechanical properties of Ni that allow for nanowires longer and more homogeneous in length than their only-Au counterparts. The nanostructured electrodes show impedance values, measured by electrochemical impedance spectroscopy (EIS), at least 9 times lower than those of flat reference electrodes. This ratio is in good accordance with the increased effective surface area determined both from SEM images and cyclic voltammetry measurements, evidencing that only Au is exposed to the medium. The observed EIS profile evolution of Ni-Au electrodes over 7 days were very close to those of Au electrodes and differently from Ni ones. Finally, the morphology, viability and neuronal differentiation of rat embryonic cortical cells cultured on Ni-Au NW electrodes were found to be similar to those on control (glass) substrates and Au NW electrodes, accompanied by a lower glial cell differentiation. This positive in-vitro neural cell behavior encourages further investigation to explore the tissue responses that the implantation of these nanostructured electrodes might elicit in healthy (damaged) neural tissues in vivo, with special emphasis on eventual tissue encapsulation.
(© 2024. The Author(s).)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje