Prediction of Visual Field Progression with Baseline and Longitudinal Structural Measurements Using Deep Learning.

Autor: Mohammadzadeh V; From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA., Wu S; Department of Computer Science, Pepperdine University (S.W., F.S.), Malibu, California, USA., Besharati S; From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA., Davis T; Department of Computer Science, University of California Los Angeles (T.D., A.V., F.S.), Los Angeles, California, USA., Vepa A; Department of Computer Science, University of California Los Angeles (T.D., A.V., F.S.), Los Angeles, California, USA., Morales E; From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA., Edalati K; From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA., Rafiee M; From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA., Martinyan A; From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA., Zhang D; From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA., Scalzo F; Department of Computer Science, Pepperdine University (S.W., F.S.), Malibu, California, USA; Department of Computer Science, University of California Los Angeles (T.D., A.V., F.S.), Los Angeles, California, USA., Caprioli J; From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA., Nouri-Mahdavi K; From the Glaucoma Division, Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (V.M., S.B., E.M., K.E., M.R., A.M., D.Z., J.C., K.N.-M.), Los Angeles, California, USA. Electronic address: nouri-mahdavi@jsei.ucla.edu.
Jazyk: angličtina
Zdroj: American journal of ophthalmology [Am J Ophthalmol] 2024 Jun; Vol. 262, pp. 141-152. Date of Electronic Publication: 2024 Feb 12.
DOI: 10.1016/j.ajo.2024.02.007
Abstrakt: Purpose: Identifying glaucoma patients at high risk of progression based on widely available structural data is an unmet task in clinical practice. We test the hypothesis that baseline or serial structural measures can predict visual field (VF) progression with deep learning (DL).
Design: Development of a DL algorithm to predict VF progression.
Methods: 3,079 eyes (1,765 patients) with various types of glaucoma and ≥5 VFs, and ≥3 years of follow-up from a tertiary academic center were included. Serial VF mean deviation (MD) rates of change were estimated with linear-regression. VF progression was defined as negative MD slope with p<0.05. A Siamese Neural Network with ResNet-152 backbone pre-trained on ImageNet was designed to predict VF progression using serial optic-disc photographs (ODP), and baseline retinal nerve fiber layer (RNFL) thickness. We tested the model on a separate dataset (427 eyes) with RNFL data from different OCT. The Main Outcome Measure was Area under ROC curve (AUC).
Results: Baseline average (SD) MD was 3.4 (4.9)dB. VF progression was detected in 900 eyes (29%). AUC (95% CI) for model incorporating baseline ODP and RNFL thickness was 0.813 (0.757-0.869). After adding the second and third ODPs, AUC increased to 0.860 and 0.894, respectively (p<0.027). This model also had highest AUC (0.911) for predicting fast progression (MD rate <1.0 dB/year). Model's performance was similar when applied to second dataset using RNFL data from another OCT device (AUC=0.893; 0.837-0.948).
Conclusions: DL model predicted VF progression with clinically relevant accuracy using baseline RNFL thickness and serial ODPs and can be implemented as a clinical tool after further validation.
(Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE