Strong intramolecular charge-transfer effect strengthening naphthoquinone-based chemosensor: Experimental and theoretical evaluation.

Autor: Sayfiddinov D; Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea., Kumar RS; Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea., Kaliannagounder VK; Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea., Ravichandiran P; Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Analytical, HP Green R&D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, 562114 Karnataka, India., Cho KB; Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea., Kim CS; Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea., Park CH; Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea., Shim KS; Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea., Choi HW; Department of Animal Science, College of Agriculture and Life Sciences, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea., Park BH; Department of Biochemistry, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea., Han MK; Department of Microbiology, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea., Yoo DJ; Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea. Electronic address: djyoo@jbnu.ac.kr.
Jazyk: angličtina
Zdroj: Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy [Spectrochim Acta A Mol Biomol Spectrosc] 2024 Apr 15; Vol. 311, pp. 123908. Date of Electronic Publication: 2024 Jan 24.
DOI: 10.1016/j.saa.2024.123908
Abstrakt: An aminophenol-linked naphthoquinone-based fluorometric and colorimetric chemosensor 2-chloro-3-((3-hydroxyphenyl) amino) naphthalene-1,4-dione (2CAN-Dione) was synthesized for selective detection of Sn 2+ ion in aqueous solution. The amine and conversion of carbonyl into carboxyl groups play a vital role in the sensing mechanism when Sn 2+ is added to 2CAN-Dione. Comprehensive characterization of the sensor was carried out using standard spectral and analytical approaches. Because of the intramolecular charge transfer (ICT) effect and the turn-on sensing mode, the strong fluorometric emission towards Sn 2+ was observed at about 435 nm. The chemosensor exhibited good selectivity for Sn 2+ in the presence of coexisting metal ions. An improved linear connection was established with a low limit of detection (0.167 μM). FT-IR, 1 H NMR, 13 C NMR, and quantum chemistry methods were performed to verify the binding coordination mechanism. The chemosensing probe 2CAN-Dione was successfully employed in bioimaging investigations, demonstrating that it is a reliable fluorescent marker for Sn 2+ in human cancer cells.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE