Ligand-Induced In Situ Epitaxial Growth of PbI 2 Nanosheets/MAPbI 3 Heterojunction Realizes High-Performance HTM-Free Carbon-Based MAPbI 3 Solar Cells.
Autor: | Sang K; School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China., Wu D; School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China., Zhao S; School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China., Zhou H; School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China., Zhang J; School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China., Tong Z; School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China., Ding F; School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China., Pang Q; School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China., Zhang X; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China., Zhou L; School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China., Chen P; School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China. |
---|---|
Jazyk: | angličtina |
Zdroj: | Small methods [Small Methods] 2024 Sep; Vol. 8 (9), pp. e2301531. Date of Electronic Publication: 2024 Feb 02. |
DOI: | 10.1002/smtd.202301531 |
Abstrakt: | Hole-transporting layer-free carbon-based perovskite solar cells (HTL-free C-PSCs) hold great promise for photovoltaic applications due to their low cost and outstanding stability. However, the low power conversion efficiency (PCE) of HTL-free C-PSCs mainly results from grain boundaries (GBs). Here, epitaxial growth is proposed to rationally design a hybrid nanostructure of PbI (© 2024 Wiley‐VCH GmbH.) |
Databáze: | MEDLINE |
Externí odkaz: |