Discovery of a novel, highly potent EZH2 PROTAC degrader for targeting non-canonical oncogenic functions of EZH2.
Autor: | Velez J; Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA., Dale B; Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA., Park KS; Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA., Kaniskan HÜ; Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA., Yu X; Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. Electronic address: xufen.yu@mssm.edu., Jin J; Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. Electronic address: jian.jin@mssm.edu. |
---|---|
Jazyk: | angličtina |
Zdroj: | European journal of medicinal chemistry [Eur J Med Chem] 2024 Mar 05; Vol. 267, pp. 116154. Date of Electronic Publication: 2024 Jan 26. |
DOI: | 10.1016/j.ejmech.2024.116154 |
Abstrakt: | Aberrant expression of EZH2, the main catalytic subunit of PRC2, has been implicated in numerous cancers, including leukemia, breast, and prostate. Recent studies have highlighted non-catalytic oncogenic functions of EZH2, which EZH2 catalytic inhibitors cannot attenuate. Therefore, proteolysis-targeting chimera (PROTAC) degraders have been explored as an alternative therapeutic approach to suppress both canonical and non-canonical oncogenic activity. Here we present MS8847, a novel, highly potent EZH2 PROTAC degrader that recruits the E3 ligase von Hippel-Lindau (VHL). MS8847 degrades EZH2 in a concentration-, time-, and ubiquitin-proteasome system (UPS)-dependent manner. Notably, MS8847 induces superior EZH2 degradation and anti-proliferative effects in MLL-rearranged (MLL-r) acute myeloid leukemia (AML) cells compared to previously published EZH2 PROTAC degraders. Moreover, MS8847 degrades EZH2 and inhibits cell growth in triple-negative breast cancer (TNBC) cell lines, displays efficacy in a 3D TNBC in vitro model, and has a pharmacokinetic (PK) profile suitable for in vivo efficacy studies. Overall, MS8847 is a valuable chemical tool for the biomedical community to investigate canonical and non-canonical oncogenic functions of EZH2. Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: J.J. is a cofounder and equity shareholder in Cullgen, Inc., a scientific cofounder and scientific advisory board member of Onsero Therapeutics, Inc., and a consultant for Cullgen, Inc., EpiCypher, Inc., Accent Therapeutics, Inc, and Tavotek Biotherapeutics, Inc. The Jin laboratory received research funds from Celgene Corporation, Levo Therapeutics, Inc., Cullgen, Inc. and Cullinan Oncology, Inc. Other authors declare no conflicts of interest. (Copyright © 2024 Elsevier Masson SAS. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |