Impact of COVID-19 pandemic in the Brazilian maternal mortality ratio: A comparative analysis of Neural Networks Autoregression, Holt-Winters exponential smoothing, and Autoregressive Integrated Moving Average models.
Autor: | Cañedo MC; Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil., Lopes TIB; Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil., Rossato L; Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil., Nunes IB; Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil., Faccin ID; Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil., Salomé TM; Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil., Simionatto S; Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil. |
---|---|
Jazyk: | angličtina |
Zdroj: | PloS one [PLoS One] 2024 Jan 31; Vol. 19 (1), pp. e0296064. Date of Electronic Publication: 2024 Jan 31 (Print Publication: 2024). |
DOI: | 10.1371/journal.pone.0296064 |
Abstrakt: | Background and Objectives: The acute respiratory infection caused by severe acute respiratory syndrome coronavirus disease (COVID-19) has resulted in increased mortality among pregnant, puerperal, and neonates. Brazil has the highest number of maternal deaths and a distressing fatality rate of 7.2%, more than double the country's current mortality rate of 2.8%. This study investigates the impact of the COVID-19 pandemic on the Brazilian Maternal Mortality Ratio (BMMR) and forecasts the BMMR up to 2025. Methods: To assess the impact of the COVID-19 pandemic on the BMMR, we employed Holt-Winters, Autoregressive Integrated Moving Average (ARIMA), and Neural Networks Autoregression (NNA). We utilized a retrospective time series spanning twenty-five years (1996-2021) to forecast the BMMR under both a COVID-19 pandemic scenario and a controlled COVID-19 scenario. Results: Brazil consistently exhibited high maternal mortality values (mean BMMR [1996-2019] = 57.99 ±6.34/100,000 live births) according to World Health Organization criteria. The country experienced its highest mortality peak in the historical BMMR series in the second quarter of 2021 (197.75/100,000 live births), representing a more than 200% increase compared to the previous period. Holt-Winter and ARIMA models demonstrated better agreement with prediction results beyond the sample data, although NNA provided a better fit to previous data. Conclusions: Our study revealed an increase in BMMR and its temporal correlation with COVID-19 incidence. Additionally, it showed that Holt-Winter and ARIMA models can be employed for BMMR forecasting with lower errors. This information can assist governments and public health agencies in making timely and informed decisions. Competing Interests: The authors have declared that no competing interests exist. (Copyright: © 2024 Cañedo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |