Highly loaded bimetallic iron-cobalt catalysts for hydrogen release from ammonia.

Autor: Chen S; Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany., Jelic J; Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany., Rein D; Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.; Faculty of Chemistry, University of Duisburg-Essen, Universtätsstr. 7, 45141, Essen, Germany., Najafishirtari S; Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany., Schmidt FP; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195, Berlin, Germany., Girgsdies F; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195, Berlin, Germany., Kang L; Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany., Wandzilak A; Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany., Rabe A; Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany.; Faculty of Chemistry, University of Duisburg-Essen, Universtätsstr. 7, 45141, Essen, Germany., Doronkin DE; Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.; Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany., Wang J; Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany., Friedel Ortega K; Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany., DeBeer S; Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany., Grunwaldt JD; Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.; Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany., Schlögl R; Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195, Berlin, Germany., Lunkenbein T; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195, Berlin, Germany., Studt F; Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.; Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131, Karlsruhe, Germany., Behrens M; Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118, Kiel, Germany. mbehrens@ac.uni-kiel.de.; Faculty of Chemistry, University of Duisburg-Essen, Universtätsstr. 7, 45141, Essen, Germany. mbehrens@ac.uni-kiel.de.; Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, 24118, Kiel, Germany. mbehrens@ac.uni-kiel.de.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2024 Jan 29; Vol. 15 (1), pp. 871. Date of Electronic Publication: 2024 Jan 29.
DOI: 10.1038/s41467-023-44661-6
Abstrakt: Ammonia is a storage molecule for hydrogen, which can be released by catalytic decomposition. Inexpensive iron catalysts suffer from a low activity due to a too strong iron-nitrogen binding energy compared to more active metals such as ruthenium. Here, we show that this limitation can be overcome by combining iron with cobalt resulting in a Fe-Co bimetallic catalyst. Theoretical calculations confirm a lower metal-nitrogen binding energy for the bimetallic catalyst resulting in higher activity. Operando spectroscopy reveals that the role of cobalt in the bimetallic catalyst is to suppress the bulk-nitridation of iron and to stabilize this active state. Such catalysts are obtained from Mg(Fe,Co) 2 O 4 spinel pre-catalysts with variable Fe:Co ratios by facile co-precipitation, calcination and reduction. The resulting Fe-Co/MgO catalysts, characterized by an extraordinary high metal loading reaching 74 wt.%, combine the advantages of a ruthenium-like electronic structure with a bulk catalyst-like microstructure typical for base metal catalysts.
(© 2024. The Author(s).)
Databáze: MEDLINE