Psychometric evaluation of the DePaul Symptom Questionnaire-Short Form (DSQ-SF) among adults with Long COVID, ME/CFS, and healthy controls: A machine learning approach.
Autor: | McGarrigle WJ; University of Kentucky, USA., Furst J; DePaul University, USA., Jason LA; DePaul University, USA. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of health psychology [J Health Psychol] 2024 Sep; Vol. 29 (11), pp. 1241-1252. Date of Electronic Publication: 2024 Jan 28. |
DOI: | 10.1177/13591053231223882 |
Abstrakt: | Long COVID shares a number of clinical features with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), including post-exertional malaise, severe fatigue, and neurocognitive deficits. Utilizing validated assessment tools that accurately and efficiently screen for these conditions can facilitate diagnostic and treatment efforts, thereby improving patient outcomes. In this study, we generated a series of random forest machine learning algorithms to evaluate the psychometric properties of the DePaul Symptom Questionnaire-Short Form (DSQ-SF) in classifying large groups of adults with Long COVID, ME/CFS (without Long COVID), and healthy controls. We demonstrated that the DSQ-SF can accurately classify these populations with high degrees of sensitivity and specificity. In turn, we identified the particular DSQ-SF symptom items that best distinguish Long COVID from ME/CFS, as well as those that differentiate these illness groups from healthy controls. Competing Interests: Declaration of conflicting interestsThe authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. |
Databáze: | MEDLINE |
Externí odkaz: |