Testing quantum electrodynamics in extreme fields using helium-like uranium.

Autor: Loetzsch R; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany. robert.loetzsch@uni-jena.de., Beyer HF; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany., Duval L; Laboratoire Kastler Brossel, Sorbonne Université, ENS-PSL Research University, Collège de France, CNRS, Paris, France., Spillmann U; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany., Banaś D; Institute of Physics, Jan Kochanowski University, Kielce, Poland., Dergham P; Institut des NanoSciences de Paris, CNRS, Sorbonne Université, Paris, France., Kröger FM; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany.; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.; Helmholtz-Institut Jena, Jena, Germany., Glorius J; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany., Grisenti RE; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany., Guerra M; Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal., Gumberidze A; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany., Heß R; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany., Hillenbrand PM; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.; I. Physikalisches Institut, Justus-Liebig-Universität, Giessen, Germany., Indelicato P; Laboratoire Kastler Brossel, Sorbonne Université, ENS-PSL Research University, Collège de France, CNRS, Paris, France., Jagodzinski P; Institute of Physics, Jan Kochanowski University, Kielce, Poland., Lamour E; Institut des NanoSciences de Paris, CNRS, Sorbonne Université, Paris, France., Lorentz B; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany., Litvinov S; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany., Litvinov YA; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany., Machado J; Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal., Paul N; Laboratoire Kastler Brossel, Sorbonne Université, ENS-PSL Research University, Collège de France, CNRS, Paris, France., Paulus GG; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany.; Helmholtz-Institut Jena, Jena, Germany., Petridis N; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.; Institut für Kernphysik, Goethe-Universität, Frankfurt am Main, Germany., Santos JP; Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal., Scheidel M; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany., Sidhu RS; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.; School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK., Steck M; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany., Steydli S; Institut des NanoSciences de Paris, CNRS, Sorbonne Université, Paris, France., Szary K; Institute of Physics, Jan Kochanowski University, Kielce, Poland., Trotsenko S; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.; Helmholtz-Institut Jena, Jena, Germany., Uschmann I; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany., Weber G; Helmholtz-Institut Jena, Jena, Germany., Stöhlker T; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany.; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.; Helmholtz-Institut Jena, Jena, Germany., Trassinelli M; Institut des NanoSciences de Paris, CNRS, Sorbonne Université, Paris, France. martino.trassinelli@insp.jussieu.fr.
Jazyk: angličtina
Zdroj: Nature [Nature] 2024 Jan; Vol. 625 (7996), pp. 673-678. Date of Electronic Publication: 2024 Jan 24.
DOI: 10.1038/s41586-023-06910-y
Abstrakt: Quantum electrodynamics (QED), the quantum field theory that describes the interaction between light and matter, is commonly regarded as the best-tested quantum theory in modern physics. However, this claim is mostly based on extremely precise studies performed in the domain of relatively low field strengths and light atoms and ions 1-6 . In the realm of very strong electromagnetic fields such as in the heaviest highly charged ions (with nuclear charge Z ≫ 1), QED calculations enter a qualitatively different, non-perturbative regime. Yet, the corresponding experimental studies are very challenging, and theoretical predictions are only partially tested. Here we present an experiment sensitive to higher-order QED effects and electron-electron interactions in the high-Z regime. This is achieved by using a multi-reference method based on Doppler-tuned X-ray emission from stored relativistic uranium ions with different charge states. The energy of the 1s 1/2 2p 3/2  J = 2 → 1s 1/2 2s 1/2  J = 1 intrashell transition in the heaviest two-electron ion (U 90+ ) is obtained with an accuracy of 37 ppm. Furthermore, a comparison of uranium ions with different numbers of bound electrons enables us to disentangle and to test separately the one-electron higher-order QED effects and the bound electron-electron interaction terms without the uncertainty related to the nuclear radius. Moreover, our experimental result can discriminate between several state-of-the-art theoretical approaches and provides an important benchmark for calculations in the strong-field domain.
(© 2024. The Author(s).)
Databáze: MEDLINE