PRMT5 orchestrates EGFR and AKT networks to activate NFκB and promote EMT.

Autor: Huang L, Ravi M, Zhang XO, Verdejo-Torres O, Shendy NAM, Nezhady MAM, Gopalan S, Wang G, Durbin AD, Fazzio TG, Wu Q
Jazyk: angličtina
Zdroj: BioRxiv : the preprint server for biology [bioRxiv] 2024 Jan 04. Date of Electronic Publication: 2024 Jan 04.
DOI: 10.1101/2024.01.03.574104
Abstrakt: Neuroblastoma remains a formidable challenge in pediatric oncology, representing 15% of cancer-related mortalities in children. Despite advancements in combinatorial and targeted treatments improving survival rates, nearly 50% of patients with high-risk neuroblastoma will ultimately succumb to their disease. Dysregulation of the epithelial-mesenchymal transition (EMT) is a key mechanism of tumor cell dissemination, resulting in metastasis and poor outcomes in many cancers. Our prior work identified PRMT5 as a key regulator of EMT via methylation of AKT at arginine 15, enhancing the expression of EMT-driving transcription factors and facilitating metastasis. Here, we identify that PRMT5 directly regulates the transcription of the epidermal growth factor receptor (EGFR). PRMT5, through independent modulation of the EGFR and AKT pathways, orchestrates the activation of NFκB, resulting in the upregulation of the pro-EMT transcription factors ZEB1, SNAIL, and TWIST1. Notably, EGFR and AKT form a compensatory feedback loop, reinforcing the expression of these EMT transcription factors. Small molecule inhibition of PRMT5 methyltransferase activity disrupts EGFR/AKT signaling, suppresses EMT transcription factor expression and ablates tumor growth in vivo . Our findings underscore the pivotal role of PRMT5 in the control of the EMT program in high-risk neuroblastoma.
Databáze: MEDLINE