Additive manufacturing of Ni-free Ti-based shape memory alloys: A review.
Autor: | Vilella T; Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona-Tech (UPC), Campus Diagonal Besòs-EEBE, Av. Eduard Maristany 10, 08019 Barcelona, Spain; CIEFMA-Department of Materials Science, Universitat Politècnica de Catalunya, Barcelona-Tech (UPC), Campus Diagonal Besòs-EEBE, Barcelona 08019, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona-Tech, Campus Diagonal Besòs-EEBE, Barcelona 08019, Spain. Electronic address: tania.vilella@upc.edu., Rodríguez D; Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona-Tech (UPC), Campus Diagonal Besòs-EEBE, Av. Eduard Maristany 10, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona-Tech, Campus Diagonal Besòs-EEBE, Barcelona 08019, Spain., Fargas G; CIEFMA-Department of Materials Science, Universitat Politècnica de Catalunya, Barcelona-Tech (UPC), Campus Diagonal Besòs-EEBE, Barcelona 08019, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona-Tech, Campus Diagonal Besòs-EEBE, Barcelona 08019, Spain. |
---|---|
Jazyk: | angličtina |
Zdroj: | Biomaterials advances [Biomater Adv] 2024 Apr; Vol. 158, pp. 213774. Date of Electronic Publication: 2024 Jan 15. |
DOI: | 10.1016/j.bioadv.2024.213774 |
Abstrakt: | Ni-free Ti-based Shape Memory Alloys composed of non-toxic elements have been studied as promising candidates for biomedical applications. However, high tool wear makes them complex to manufacture with conventional techniques. In this way, Additive Manufacturing technologies allow to fabricate complex three-dimensional structures overcoming their poor workability. Control of composition, porosity, microstructure, texture and processing are the key challenges for developing Ni-free Ti-based Shape Memory Alloys. This article reviews various studies conducted on the Additive Manufacturing of Ni-free Ti-based shape memory alloys, including their processing, microstructures and properties. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024. Published by Elsevier B.V.) |
Databáze: | MEDLINE |
Externí odkaz: |