A novel analytical method to calibrate cylindrical side-hole type sodium iodide scintillation detectors.

Autor: Abbas MI; Physics Department, Faculty of Science, Alexandria University, 21511, Alexandria, Egypt. Electronic address: mabbas@physicist.net.
Jazyk: angličtina
Zdroj: Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine [Appl Radiat Isot] 2024 Mar; Vol. 205, pp. 111178. Date of Electronic Publication: 2024 Jan 04.
DOI: 10.1016/j.apradiso.2024.111178
Abstrakt: Geometrical and absolute efficiencies play a significant role in the calibration of radioactivity measuring systems, which are regularly complicated. A novel analytical method of efficiency calibration is proposed for cylindrical side-hole type sodium iodide scintillation detectors. Cylindrical side-hole type sodium iodide scintillation detectors have a cylindrical side-hole passing perpendicularly on the sodium iodide crystal axis, which is gathered in the aluminum cover. This detector is a setup for low-level gamma radiation measurement, because of the close 4π solid angle correlated with it, this setup is convenient when low-energy radiation requires efficient detection. Also, the 4π gamma-ray counting is an established way for direct activity measurements and is remarkably well suited for radionuclides with complex gamma-ray spectra. This novel approach depends on the calculation of two primary factors, the photon path length inside the detector active material, and the solid angle, delimited by the radiation source-detector system. In addition, the attenuation of photons by the sodium iodide crystal covering substance is also included by determining the photon path length through this substance. The novel analytical approach calculates the total and geometrical efficiencies of this kind of detector. In comparison, the differences with the published data in the literature indicate that the current approach is favorable in the efficiency measurement of the cylindrical side-hole type sodium iodide scintillation detectors.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE