Hyperbaric oxygen therapy enhances graft healing and mechanical properties after anterior cruciate ligament reconstruction: An experimental study in rabbits.
Autor: | Leite CBG; Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.; Department of Orthopedic Surgery, Center for Cartilage Repair and Sports Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA., Leite MS; Laboratório de Poluição Atmosférica Experimental LIM05, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil., Varone BB; Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil., Santos GBD; Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil., Silva MDS; Department of Diagnostic Imaging, Universidade Federal de São Paulo, UNIFESP, Sao Paulo, Brazil., Pereira CAM; Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil., Lattermann C; Department of Orthopedic Surgery, Center for Cartilage Repair and Sports Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA., Demange MK; Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of orthopaedic research : official publication of the Orthopaedic Research Society [J Orthop Res] 2024 Jun; Vol. 42 (6), pp. 1210-1222. Date of Electronic Publication: 2024 Jan 15. |
DOI: | 10.1002/jor.25787 |
Abstrakt: | Hyperbaric oxygen therapy (HBOT) has proven successful in wound healing. However, its potential effects on anterior cruciate ligament (ACL) injuries remain uncertain. This study aimed to investigate the impact of HBOT on graft healing following ACL reconstruction in rabbits. Male New Zealand rabbits underwent ACL reconstruction and were randomly divided into two groups: the HBOT group and the ambient air group. The HBOT group received 100% oxygen at 2.5 atmospheres absolute for 2 h daily for 5 consecutive days, starting from the first day after surgery. The ambient air group was maintained in normal room air throughout the entire period. After 12 weeks following the surgery, animals were euthanized, and their knees were harvested for analysis. The HBOT group demonstrated superior graft maturation and integration in comparison to the ambient air group, as evidenced by lower graft signal intensity on magnetic resonance imaging, decreased femoral and tibial tunnel size, and higher bone mineral density values on high-resolution peripheral quantitative computed tomography scans. Additionally, biomechanical testing indicated that the HBOT group had greater load to failure and stiffness values than the ambient air group. In conclusion, the adjuvant use of HBOT improved ACL graft maturation and integration, reduced tunnel widening, and enhanced the biomechanical properties of the graft. These results may provide important insights into the potential clinical application of HBOT as a therapeutic intervention to enhance graft healing after ACL reconstruction, paving the way for further research in this area. (© 2024 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.) |
Databáze: | MEDLINE |
Externí odkaz: |