Response characteristics and functional predictions of soil microorganisms to heavy metals, antibiotics, and their resistance genes originating from different animal farms amended with Herbaspirillum huttiense.

Autor: Zhang X; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China. Electronic address: xrzhang@iae.ac.cn., Gong Z; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China. Electronic address: zgong@iae.ac.cn., Jia Y; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address: jiayanjie21@mails.ucas.ac.cn., Zhao X; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; School of Environmental Science, Liaoning University, Shenyang, 110036, PR China. Electronic address: zhaoxiang917@163.com., Jia C; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China. Electronic address: jiachunyun@iae.ac.cn., Chen X; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China; Key Laboratory of Conservation Tillage and Ecological Agriculture, Liaoning, 110016, PR China. Electronic address: chenxin@iae.ac.cn., Guo S; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China. Electronic address: shuhaiguo@iae.ac.cn., Ludlow RA; School of Biosciences, Cardiff University, Cardiff, CF10 3TL, UK. Electronic address: LudlowRA@cardiff.ac.uk.
Jazyk: angličtina
Zdroj: Environmental research [Environ Res] 2024 Apr 01; Vol. 246, pp. 118143. Date of Electronic Publication: 2024 Jan 08.
DOI: 10.1016/j.envres.2024.118143
Abstrakt: Current understanding is limited regarding technologies that use biochar and microorganisms to simultaneously treat soils contaminated with both veterinary antibiotics (VAs) and heavy metals (HMs) from different animal farms. The contributions of the keystone taxa and their similarities from different animal farms under VA and HM stresses before and after soil remediation should be further investigated as well. An innovative treatment of Herbaspirillum huttiense (HHS1) inoculated waste fungus chaff-based (WFCB) biochar was designed for immobilization of copper (Cu) and zinc (Zn), and the removal of oxytetracycline (OTC), enrofloxacin (ENR), and a subsequent reduction in their resistance genes in soils from pig, cow, and chicken farms. Roles of indigenous microorganisms which can treat soils contaminated with VAs and HMs were summarized. Results showed that available Cu and Zn were reduced by 19.5% and 28.1%, respectively, while 49.8% of OTC and 85.1% of ENR were removed by WFCB-HHS1. The decrease in ENR improved overall microbial community diversity, and the increases in genera HHS1, Pedobacter, Flavobacterium and Aequorivita, along with the decreases of genera Bacillus, Methylobacter, and Fermentimonas were indirectly favorable to treat HMs and VAs in soils from different animal farms. Bacterial communities in different animal farm soils were predominantly influenced by stochastic processes. The regulations of functional genes associated with metabolism and environmental information processing, which contribute to HM and VA defense, were altered when using WFCB-HHS1. Furthermore, the spread of their antibiotic resistance genes was restricted.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE