Marinomonas mediterranea synthesizes an R-type bacteriocin.

Autor: Lucas-Elío P; Department of Genetics and Microbiology, University of Murcia, Murcia, Spain., ElAlami T; Department of Genetics and Microbiology, University of Murcia, Murcia, Spain., Martínez A; Department of Genetics and Microbiology, University of Murcia, Murcia, Spain., Sanchez-Amat A; Department of Genetics and Microbiology, University of Murcia, Murcia, Spain.
Jazyk: angličtina
Zdroj: Applied and environmental microbiology [Appl Environ Microbiol] 2024 Jan 24; Vol. 90 (1), pp. e0127323. Date of Electronic Publication: 2024 Jan 03.
DOI: 10.1128/aem.01273-23
Abstrakt: Prophages integrated into bacterial genomes can become cryptic or defective prophages, which may evolve to provide various traits to bacterial cells. Previous research on Marinomonas mediterranea MMB-1 demonstrated the production of defective particles. In this study, an analysis of the genomes of three different strains (MMB-1, MMB-2, and MMB-3) revealed the presence of a region named MEDPRO1, spanning approximately 52 kb, coding for a defective prophage in strains MMB-1 and MMB-2. This prophage seems to have been lost in strain MMB-3, possibly due to the presence of spacers recognizing this region in an I-F CRISPR array in this strain. However, all three strains produce remarkably similar defective particles. Using strain MMB-1 as a model, mass spectrometry analyses indicated that the structural proteins of the defective particles are encoded by a second defective prophage situated within the MEDPRO2 region, spanning approximately 13 kb. This finding was further validated through the deletion of this second defective prophage. Genomic region analyses and the detection of antimicrobial activity of the defective prophage against other Marinomonas species suggest that it is an R-type bacteriocin. Marinomonas mediterranea synthesizes antimicrobial proteins with lysine oxidase activity, and the synthesis of an R-type bacteriocin constitutes an additional mechanism in microbial competition for the colonization of habitats such as the surface of marine plants.IMPORTANCEThe interactions between bacterial strains inhabiting the same environment determine the final composition of the microbiome. In this study, it is shown that some extracellular defective phage particles previously observed in Marinomonas mediterranea are in fact R-type bacteriocins showing antimicrobial activity against other Marinomonas strains. The operon coding for the R-type bacteriocin has been identified.
Competing Interests: The authors declare no conflict of interest.
Databáze: MEDLINE