Impact of deoxynivalenol on rumen function, production, and health of dairy cows: Insights from metabolomics and microbiota analysis.

Autor: Dong JN; College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China., Zhao ZK; College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China., Wang ZQ; College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China., Li SZ; College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China., Zhang YP; College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China; Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co., Ltd, Changchun 130118, PR China., Sun Z; College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China; Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co., Ltd, Changchun 130118, PR China; College of Life Science, Jilin Agricultural University, Changchun 130118, PR China., Qin GX; College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China., Zhang XF; College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China; Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co., Ltd, Changchun 130118, PR China., Zhao W; Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co., Ltd, Changchun 130118, PR China., Aschalew ND; College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China., Wang T; College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China; Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co., Ltd, Changchun 130118, PR China. Electronic address: cagewang@163.com., Zhen YG; College of Animal Science and Technology, JLAU-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China; Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co., Ltd, Changchun 130118, PR China. Electronic address: nickzhen@263.net.
Jazyk: angličtina
Zdroj: Journal of hazardous materials [J Hazard Mater] 2024 Mar 05; Vol. 465, pp. 133376. Date of Electronic Publication: 2023 Dec 27.
DOI: 10.1016/j.jhazmat.2023.133376
Abstrakt: Deoxynivalenol contamination in feed and food, pervasive from growth, storage, and processing, poses a significant risk to dairy cows, particularly when exposed to a high-starch diet; however, whether a high-starch diet exacerbates these negative effects remains unclear. Therefore, we investigated the combined impact of deoxynivalenol and dietary starch on the production performance, rumen function, and health of dairy cows using metabolomics and 16 S rRNA sequencing. Our findings suggested that both high- and low-starch diets contaminated with deoxynivalenol significantly reduced the concentration of propionate, isobutyrate, valerate, total volatile fatty acids (TVFA), and microbial crude protein (MCP) concentrations, accompanied by a noteworthy increase in NH 3 -N concentration in vitro and in vivo (P < 0.05). Deoxynivalenol altered the abundance of microbial communities in vivo, notably affecting Oscillospiraceae, Lachnospiraceae, Desulfovibrionaceae, and Selenomonadaceae. Additionally, it significantly downregulated lecithin, arachidonic acid, valine, leucine, isoleucine, arginine, and proline metabolism (P < 0.05). Furthermore, deoxynivalenol triggered oxidative stress, inflammation, and dysregulation in immune system linkage, ultimately compromising the overall health of dairy cows. Collectively, both high- and low-starch diets contaminated with deoxynivalenol could have detrimental effects on rumen function, posing a potential threat to production performance and the overall health of cows. Notably, the negative effects of deoxynivalenol are more pronounced with a high-starch diet than a low-starch diet.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE