Enhancing Top-Down Analysis of Proteins by Combining Ultraviolet Photodissociation (UVPD), Proton-Transfer Charge Reduction (PTCR), and Gas-Phase Fractionation to Alleviate the Impact of Nondissociated Precursor Ions.

Autor: Dunham SD; Department of Chemistry, University of Texas, Austin, Texas 787812, United States., Brodbelt JS; Department of Chemistry, University of Texas, Austin, Texas 787812, United States.
Jazyk: angličtina
Zdroj: Journal of the American Society for Mass Spectrometry [J Am Soc Mass Spectrom] 2024 Feb 07; Vol. 35 (2), pp. 255-265. Date of Electronic Publication: 2023 Dec 27.
DOI: 10.1021/jasms.3c00351
Abstrakt: Recent advances in top-down mass spectrometry strategies continue to improve the analysis of intact proteins. 193 nm ultraviolet photodissociation (UVPD) is one method well-suited for top-down analysis. UVPD is often performed using relatively low photon flux in order to limit multiple-generation dissociation of fragment ions and maximize sequence coverage. Consequently, a large portion of the precursor ion survives the UVPD process, dominates the spectrum, and may impede identification of fragment ions. Here, we explore the isolation of subpopulations of fragment ions lower and higher than the precursor ion after UVPD as a means to eliminate the impact of the surviving precursor ion on the detection of low abundance fragment ions. This gas-phase fractionation method improved sequence coverage harvested from fragment ions found in the m / z regions lower and higher than the precursor by an average factor of 1.3 and 2.3, respectively. Combining this gas-phase fractionation method with proton transfer charge reduction (PTCR) further increased the sequence coverage obtained from these m / z regions by another factor of 1.3 and 1.4, respectively. Implementing a post-UVPD fractionation + PTCR strategy with six fractionation events resulted in a sequence coverage of 75% for enolase, the highest reported for 193 nm UVPD.
Databáze: MEDLINE