Autor: |
Roggio F; Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n 97, 95123 Catania, Italy.; Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy., Trovato B; Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n 97, 95123 Catania, Italy., Sortino M; Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n 97, 95123 Catania, Italy., Onesta MP; Spinal Cord Unit, Cannizzaro Hospital, 95100 Catania, Italy., Petrigna L; Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n 97, 95123 Catania, Italy., Musumeci G; Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n 97, 95123 Catania, Italy.; Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia n 97, 95123 Catania, Italy.; Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA. |
Abstrakt: |
Adolescent idiopathic scoliosis (AIS) is the predominant orthopedic disorder in children, affecting 1-3% of the global population. Research in this field has tried to delineate the genetic factors behind scoliosis and its association with heredity since AIS is considered a polygenic disease and has different genetic and epigenetic factors. The current study conducted a narrative review of the literature, focusing on biomarkers in the pathophysiology of muscle in AIS patients. Articles were collected from Scopus, Pubmed, and Web of Science. The key screening parameters were scoliosis classification, sampling, and the biomarkers evaluated. This review emphasizes potential key mechanisms and molecular regulators in muscle tissue. While there has been limited focus on the proteins contributing to muscle changes in AIS, significant attention has been given to genomic studies of single-nucleotide polymorphisms, particularly in LBX1. Despite these efforts, the exact causes of AIS remain elusive, with several theories suggesting genetic and hormonal factors. This review identified critical protein biomarkers such as Gi-protein alpha subunits, fibrillin-1 and -2, and various differentially expressed proteins, which may be linked to muscle alterations in AIS. This field of research is still limited due to a lack of homogeneity in the distinction of patients by groups and curve severity. Although the pathophysiology of AIS is still unclear, molecular research is important to guide the treatment of AIS before achieving skeletal maturity, thus avoiding serious problems associated with posture changes and low quality of life. In the future, a more comprehensive synergy between orthopedic and molecular research might ameliorate the diagnosis and treatment of AIS patients. |