Towards Optical Information Recording: A Robust Visible-Light-Driven Molecular Photoswitch with the Ring-Closure Reaction Yield Exceeding 96.3 .
Autor: | Hong P; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China., Liu J; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China., Qin KX; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China., Tian R; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China., Peng LY; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China., Su YS; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China., Gan Z; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China., Yu XX; School of Integrated Circuits, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China., Ye L; School of Integrated Circuits, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China., Zhu MQ; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China., Li C; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China. |
---|---|
Jazyk: | angličtina |
Zdroj: | Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2024 Feb 19; Vol. 63 (8), pp. e202316706. Date of Electronic Publication: 2024 Jan 11. |
DOI: | 10.1002/anie.202316706 |
Abstrakt: | Diarylethene molecular photoswitches hold great fascination as optical information materials due to their unique bistability and exceptional reversible photoswitching properties. Conventional diarylethenes, however, rely on UV light for ring-closure reactions, typically with modest yields. For practical application, diarylethenes driven by visible lights are preferred but achieving high ring-closure reaction yield remains a significant challenge. Herein, we synthesized a novel all-visible-light-driven photoswitch, TPAP-DTE, by facilely endcapping the dithienylethene (DTE) core with triphenylamine phenyl (TPAP) groups. Owing to the electron-donating conjugation effect of TPAP, the open-form TPAP-DTE responds strongly to short-wavelength visible lights with considerable photocyclization quantum yields and molar absorption coefficient. Upon 405 nm visible-light irradiation, TPAP-DTE achieves a ring-closure reaction yield exceeding 96.3 % (confirmed by both nuclear magnetic resonance spectroscopy and high-performance liquid chromatography). Its ring-opening reaction yield is 100 % upon irradiation with long-wavelength visible light. TPAP-DTE could be regarded as a bidirectional "quasi"-quantitative conversion molecular switch. Furthermore, TPAP-DTE exhibits robust fatigue resistance over 100 full photoswitching cycles and great anti-aging property under 85 °C and 85 % humidity for at least 1000 h. Consequently, its rewritable QR-code, multilevel data storage, and anti-counterfeiting/encryption applications are successfully demonstrated exclusively using visible lights, positioning TPAP-DTE as a highly promising medium for information recording. (© 2023 Wiley-VCH GmbH.) |
Databáze: | MEDLINE |
Externí odkaz: |
načítá se...