Microbiome analysis reveals Microcystis blooms endogenously seeded from benthos within wastewater maturation ponds.

Autor: Romanis CS; University of Newcastle, School of Environmental and Life Sciences, Callaghan, Australia., Timms VJ; University of Newcastle, School of Environmental and Life Sciences, Callaghan, Australia.; ARC Centre of Excellence for Synthetic Biology, Callaghan, Australia., Nebauer DJ; University of Newcastle, School of Environmental and Life Sciences, Callaghan, Australia., Crosbie ND; Melbourne Water, Docklands, Victoria, Australia., Neilan BA; University of Newcastle, School of Environmental and Life Sciences, Callaghan, Australia.; ARC Centre of Excellence for Synthetic Biology, Callaghan, Australia.
Jazyk: angličtina
Zdroj: Applied and environmental microbiology [Appl Environ Microbiol] 2024 Jan 24; Vol. 90 (1), pp. e0158523. Date of Electronic Publication: 2023 Dec 20.
DOI: 10.1128/aem.01585-23
Abstrakt: Toxigenic Microcystis blooms periodically disrupt the stabilization ponds of wastewater treatment plants (WWTPs). Dense proliferations of Microcystis cells within the surface waters (SWs) impede the water treatment process by reducing the treatment efficacy of the latent WWTP microbiome. Further, water quality is reduced when conventional treatment leads to Microcystis cell lysis and the release of intracellular microcystins into the water column. Recurrent seasonal Microcystis blooms cause significant financial burdens for the water industry and predicting their source is vital for bloom management strategies. We investigated the source of recurrent toxigenic Microcystis blooms at Australia's largest lagoon-based municipal WWTP in both sediment core (SC) and SW samples between 2018 and 2020. Bacterial community composition of the SC and SW samples according to 16S rRNA gene amplicon sequencing showed that Microcystis sp. was dominant within SW samples throughout the period and reached peak relative abundances (32%) during the summer. The same Microcystis Amplicon sequence variants were present within the SC and SW samples indicating a potential migratory population that transitions between the sediment water and SWs during bloom formation events. To investigate the potential of the sediment to act as a repository of viable Microcystis cells for recurrent bloom formation, a novel in-vitro bloom model was established featuring sediments and sterilized SW collected from the WWTP. Microcystin-producing Microcystis blooms were established through passive resuspension after 12 weeks of incubation. These results demonstrate the capacity of Microcystis to transition between the sediments and SWs in WWTPs, acting as a perennial inoculum for recurrent blooms.IMPORTANCECyanobacterial blooms are prevalent to wastewater treatment facilities owing to the stable, eutrophic conditions. Cyanobacterial proliferations can disrupt operational procedures through the blocking of filtration apparatus or altering the wastewater treatment plant (WWTP) microbiome, reducing treatment efficiency. Conventional wastewater treatment often results in the lysis of cyanobacterial cells and the release of intracellular toxins which pose a health risk to end users. This research identifies a potential seeding source of recurrent toxigenic cyanobacterial blooms within wastewater treatment facilities. Our results demonstrate the capacity of Microcystis to transition between the sediments and surface waters (SWs) of wastewater treatment ponds enabling water utilities to develop adequate monitoring and management strategies. Further, we developed a novel model to demonstrate benthic recruitment of toxigenic Microcystis under laboratory conditions facilitating future research into the genetic mechanisms behind bloom development.
Competing Interests: The authors declare no conflict of interest.
Databáze: MEDLINE