Identifying and managing disturbance-stimulated flammability in woody ecosystems.
Autor: | Lindenmayer D; Fenner School of Environment and Society, Building 141, Linnaeus Way, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia., Zylstra P; School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, Western Australia, 6102, Australia. |
---|---|
Jazyk: | angličtina |
Zdroj: | Biological reviews of the Cambridge Philosophical Society [Biol Rev Camb Philos Soc] 2024 Jun; Vol. 99 (3), pp. 699-714. Date of Electronic Publication: 2023 Dec 17. |
DOI: | 10.1111/brv.13041 |
Abstrakt: | Many forest types globally have been subject to an increase in the frequency of, and area burnt by, high-severity wildfire. Here we explore the role that previous disturbance has played in increasing the extent and severity of subsequent forest fires. We summarise evidence documenting and explaining the mechanisms underpinning a pulse of flammability that may follow disturbances such as fire, logging, clearing or windthrow (a process we term disturbance-stimulated flammability). Disturbance sometimes initiates a short initial period of low flammability, but then drives an extended period of increased flammability as vegetation regrows. Our analysis initially focuses on well-documented cases in Australia, but we also discuss where these pattens may apply elsewhere, including in the Northern Hemisphere. We outline the mechanisms by which disturbance drives flammability through disrupting the ecological controls that limit it in undisturbed forests. We then develop and test a conceptual model to aid prediction of woody vegetation communities where such patterns of disturbance-stimulated flammability may occur. We discuss the interaction of ecological controls with climate change, which is driving larger and more severe fires. We also explore the current state of knowledge around the point where disturbed, fire-prone stands are sufficiently widespread in landscapes that they may promote spatial contagion of high-severity wildfire that overwhelms any reduction in fire spread offered by less-flammable stands. We discuss how land managers might deal with the major challenges that changes in landscape cover and altered fire regimes may have created. This is especially pertinent in landscapes now dominated by extensive areas of young forest regenerating after logging, regrowing following broadscale fire including prescribed burning, or regenerating following agricultural land abandonment. Where disturbance is found to stimulate flammability, then key management actions should consider the long-term benefits of: (i) limiting disturbance-based management like logging or burning that creates young forests and triggers understorey development; (ii) protecting young forests from disturbances and assisting them to transition to an older, less-flammable state; and (iii) reinforcing the fire-inhibitory properties of older, less-flammable stands through methods for rapid fire detection and suppression. (© 2023 Cambridge Philosophical Society.) |
Databáze: | MEDLINE |
Externí odkaz: |