Nordic socio-recreational ecosystem services in a hydropeaked river.

Autor: Virk ZT; University of Oulu, Faculty of Technology, Water, Energy, Environmental Engineering Research Unit, Pentti Kaiteran katu 1, 90570 Oulu, Finland. Electronic address: Zeeshan.Virk@oulu.fi., Ashraf FB; University of Oulu, Faculty of Technology, Water, Energy, Environmental Engineering Research Unit, Pentti Kaiteran katu 1, 90570 Oulu, Finland; Oak Ridge National Laboratory, 1 Bethel Valley Road Oak Ridge, TN 37830, United States of America. Electronic address: ashraffb@ornl.gov., Haghighi AT; University of Oulu, Faculty of Technology, Water, Energy, Environmental Engineering Research Unit, Pentti Kaiteran katu 1, 90570 Oulu, Finland. Electronic address: ali.torabihaghighi@oulu.fi., Kløve B; University of Oulu, Faculty of Technology, Water, Energy, Environmental Engineering Research Unit, Pentti Kaiteran katu 1, 90570 Oulu, Finland. Electronic address: bjorn.klove@oulu.fi., Hellsten S; Finnish Environment Institute (SYKE), Paavo Havaksen tie 3 (Environmental information building, 2nd floor), 90570 Oulu, Finland. Electronic address: seppo.hellsten@syke.fi., Marttila H; University of Oulu, Faculty of Technology, Water, Energy, Environmental Engineering Research Unit, Pentti Kaiteran katu 1, 90570 Oulu, Finland. Electronic address: hannu.marttila@oulu.fi.
Jazyk: angličtina
Zdroj: The Science of the total environment [Sci Total Environ] 2024 Feb 20; Vol. 912, pp. 169385. Date of Electronic Publication: 2023 Dec 15.
DOI: 10.1016/j.scitotenv.2023.169385
Abstrakt: Fluctuating energy prices call for short-term river flow regulation at hydropower plants (HPPs), which can lead to hydropeaking - the pulsating water flow downstream from a HPP. Hydropeaking can affect land use areas of regulated rivers and subsequently their socio-recreational ecosystem services (SRESs). These areas often offer a range of services, such as swimming, boating, fishing, hiking, cycling, and berry picking. Such activities hold significant value in Nordic culture and for human wellbeing. We have examined how SRES land use areas are affected by hourly hydropeaking in a reach of the Kemijoki River in Finland. First, we determined the state of hydropeaking in the river by employing two indicators, normalized daily maximum flow difference and sub-daily flow ramping. Next, we looked at the spatiotemporal impacts of peaking hydrology using inundation maps derived from 2D-hydrodynamic modeling and a high-resolution land use map with clearly identified SRES areas. Finally, we examined the hazards to hydraulic safety in the river channel in the context of instream recreation. Our results show that hydropeaking levels in the study area remained consistently high throughout the entire study period, from 2010 to 2021. This was the case in all seasons except for the spring of 2013, 2016 and 2019. We determined that hydropeaking impacts on SRESs are mostly felt in the littoral zone (0.84 km 2 i.e., 3.1 % of the study area) during the summer season as 25 % (0.21 km 2 ) of this zone is influenced by hydropeaking. In addition, multiple recreational use areas in this zone, such as beaches, riparian forest, and summer cottages, were found to be affected by hydropeaking. The results show that most of the river channel becomes hydraulically unsafe during high ramping flows. The highest hazard to instream recreation opportunities is likely to occur during summer. Consequently, hydropeaking can threaten the social and recreational services of Nordic rivers.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE