Scale-dependent power law properties in hashtag usage time series of Weibo.
Autor: | Jiang JJ; School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan., Yamada K; Faculty of Global and Regional Studies, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan., Takayasu H; School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan.; Sony Computer Science Laboratories, 3-14-13 Higashi-Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan., Takayasu M; School of Computing, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan. takayasu.m.aa@m.titech.ac.jp. |
---|---|
Jazyk: | angličtina |
Zdroj: | Scientific reports [Sci Rep] 2023 Dec 15; Vol. 13 (1), pp. 22298. Date of Electronic Publication: 2023 Dec 15. |
DOI: | 10.1038/s41598-023-49572-6 |
Abstrakt: | We analyze the time series of hashtag numbers of social media data. We observe that the usage distribution of hashtags is characterized by a fat-tailed distribution with a size-dependent power law exponent and we find that there is a clear dependency between the growth rate distributions of hashtags and size of hashtags usage. We propose a generalized random multiplicative process model with a theory that explains the size dependency of the fat-tailed distribution. Numerical simulations show that our model reproduces these size-dependent properties nicely. We expect that our model is useful for understanding the mechanism of fat-tailed distributions in various fields of science and technology. (© 2023. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |