Dataset of Arabic spam and ham tweets.
Autor: | Kaddoura S; Zayed University, Abu Dhabi, UAE., Henno S; Zayed University, Abu Dhabi, UAE. |
---|---|
Jazyk: | angličtina |
Zdroj: | Data in brief [Data Brief] 2023 Dec 05; Vol. 52, pp. 109904. Date of Electronic Publication: 2023 Dec 05 (Print Publication: 2024). |
DOI: | 10.1016/j.dib.2023.109904 |
Abstrakt: | This data article provides a dataset of 132421 posts and their corresponding information collected from Twitter social media. The data has two classes, ham or spam, where ham indicates non-spam clean tweets. The main target of this dataset is to study a way to classify whether a post is a spam or not automatically. The data is in Arabic language only, which makes the data essential to the researchers in Arabic natural language processing (NLP) due to the lack of resources in this language. The data is made publicly available to allow researchers to use it as a benchmark for their research in Arabic NLP. The dataset was collected using the Twitter REST API between January 27, 2021, and March 10, 2021. An ad-hoc crawler was constructed using Python programming language to collect the data. Many scientists and researchers will benefit from this dataset in the domain of cybersecurity, NLP, data science and social networking analysis. (© 2023 The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |