The effect of water on gold supported chiral graphene nanoribbons: rupture of conjugation by an alternating hydrogenation pattern.

Autor: Berdonces-Layunta A; Donostia International Physics Center, 20018 San Sebastian, Spain. ABerdonces95@gmail.com.; Centro de Fisica de Materiales, 20018 San Sebastian, Spain., Matěj A; Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic. mateja@fzu.cz.; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic. jelinekp@fzu.cz.; Department of Physical Chemistry, Faculty of Science, Palacky University, 779 00 Olomouc, Czech Republic., Jiménez-Martín A; Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic. mateja@fzu.cz.; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic. jelinekp@fzu.cz.; Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, Prague 1 115 19, Czech Republic., Lawrence J; Donostia International Physics Center, 20018 San Sebastian, Spain. ABerdonces95@gmail.com.; Centro de Fisica de Materiales, 20018 San Sebastian, Spain., Mohammed MSG; Donostia International Physics Center, 20018 San Sebastian, Spain. ABerdonces95@gmail.com.; Centro de Fisica de Materiales, 20018 San Sebastian, Spain., Wang T; Donostia International Physics Center, 20018 San Sebastian, Spain. ABerdonces95@gmail.com.; Centro de Fisica de Materiales, 20018 San Sebastian, Spain., Mallada B; Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic. mateja@fzu.cz.; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic. jelinekp@fzu.cz.; Department of Physical Chemistry, Faculty of Science, Palacky University, 779 00 Olomouc, Czech Republic., de la Torre B; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic. jelinekp@fzu.cz., Martínez A; Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares (CiQUS), and Departamento de Quimica Organica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain., Vilas-Varela M; Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares (CiQUS), and Departamento de Quimica Organica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain., Nieman R; Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA., Lischka H; Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA., Nachtigallová D; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic.; IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 70800, Czech Republic., Peña D; Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares (CiQUS), and Departamento de Quimica Organica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain., Jelínek P; Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic. mateja@fzu.cz.; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic. jelinekp@fzu.cz., de Oteyza DG; Donostia International Physics Center, 20018 San Sebastian, Spain. ABerdonces95@gmail.com.; Centro de Fisica de Materiales, 20018 San Sebastian, Spain.; Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain. d.g.oteyza@cinn.es.
Jazyk: angličtina
Zdroj: Nanoscale [Nanoscale] 2024 Jan 03; Vol. 16 (2), pp. 734-741. Date of Electronic Publication: 2024 Jan 03.
DOI: 10.1039/d3nr02933f
Abstrakt: In the last few years we have observed a breakpoint in the development of graphene-derived technologies, such as liquid phase filtering and their application to electronics. In most of these cases, they imply exposure of the material to solvents and ambient moisture, either in the fabrication of the material or the final device. The present study demonstrates the sensitivity of graphene nanoribbon (GNR) zigzag edges to water, even in extremely low concentrations. We have addressed the unique reactivity of (3,1)-chiral GNR with moisture on Au(111). Water shows a reductive behaviour, hydrogenating the central carbon of the zigzag segments. By combining scanning tunnelling microscopy (STM) with simulations, we demonstrate how their reactivity reaches a thermodynamic limit when half of the unit cells are reduced, resulting in an alternating pattern of hydrogenated and pristine unit cells starting from the terminal segments. Once a quasi-perfect alternation is reached, the reaction stops regardless of the water concentration. The hydrogenated segments limit the electronic conjugation of the GNR, but the reduction can be reversed both by tip manipulation and annealing. Selective tip-induced dehydrogenation allowed the stabilization of radical states at the edges of the ribbons, while the annealing of the sample completely recovered the original, pristine GNR.
Databáze: MEDLINE