Fabrication of self-assembled micelles based on amphiphilic oxidized sodium alginate grafted oleoamine derivatives via Schiff base reduction amination reaction for delivery of hydrophobic food active ingredients.
Autor: | Liu Z; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China., Wang H; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China., Bu Y; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China., Wu T; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China., Chen X; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China., Yan H; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China. Electronic address: 070114@hainnu.edu.cn., Lin Q; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China. |
---|---|
Jazyk: | angličtina |
Zdroj: | International journal of biological macromolecules [Int J Biol Macromol] 2024 Feb; Vol. 257 (Pt 2), pp. 128653. Date of Electronic Publication: 2023 Dec 08. |
DOI: | 10.1016/j.ijbiomac.2023.128653 |
Abstrakt: | The application of hydrophobic β-carotene in the food industry are limited due to its susceptibility to light, high temperature, pH value, and other factors, leading to poor stability and low bioavailability. To address this problem, we adopt a more green and environmentally friendly reducing agent, 2-methylpyridine borane complex (pic-BH Competing Interests: Declaration of competing interest There are no conflicts to declare. (Copyright © 2023 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |