Fabrication of self-assembled micelles based on amphiphilic oxidized sodium alginate grafted oleoamine derivatives via Schiff base reduction amination reaction for delivery of hydrophobic food active ingredients.

Autor: Liu Z; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China., Wang H; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China., Bu Y; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China., Wu T; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China., Chen X; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China., Yan H; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China. Electronic address: 070114@hainnu.edu.cn., Lin Q; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China.
Jazyk: angličtina
Zdroj: International journal of biological macromolecules [Int J Biol Macromol] 2024 Feb; Vol. 257 (Pt 2), pp. 128653. Date of Electronic Publication: 2023 Dec 08.
DOI: 10.1016/j.ijbiomac.2023.128653
Abstrakt: The application of hydrophobic β-carotene in the food industry are limited due to its susceptibility to light, high temperature, pH value, and other factors, leading to poor stability and low bioavailability. To address this problem, we adopt a more green and environmentally friendly reducing agent, 2-methylpyridine borane complex (pic-BH 3 ), instead of traditional sodium borohydride, to achieve the simple green and efficient synthesis of amphiphilic oxidized sodium alginate grafted oleoamine derivatives (OSAOLA) through the reduction amination reaction of Schiff base. The resultant OSAOLA with the degree of substitution (DS) of 7.2 %, 23.6 %, and 38.8 % were synthesized, and their CMC values ranged from 0.0095 to 0.062 mg/mL, indicating excellent self-assembly capability in aqueous solution. Meanwhile, OSAOLA showed no obvious cytotoxicity to RAW 264.7 cells, thus revealing good biocompatibility. Furthermore, β-carotene, as the hydrophobic active ingredients in foods was successfully encapsulated in the OSAOLA micelles by ultrasonic-dialysis method. The prepared drug-loaded OSAOLA micelles could maintain good stability when stored at room temperature for 7 d. Additionally, they were able to continuously release β-carotene and exert long-term effects in pH 7.4 PBS at 37 °C, effectively improving the bioavailability of β-carotene, which exhibited tremendous application potential in functional food and biomedical fields.
Competing Interests: Declaration of competing interest There are no conflicts to declare.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE