Diversity and distribution of benthic dinoflagellates in Tonga include the potentially harmful genera Gambierdiscus and Fukuyoa.
Autor: | Argyle PA; School of Biological Sciences, University of Canterbury, Private Bag 4800, 20 Kirkwood Ave, Christchurch 8041, New Zealand; Cawthron Institute, Private Bag 2, 98 Halifax St East, Nelson 7042, New Zealand; Ministry of Marine Resources, PO Box 85, Moss Rd, Avarua, Rarotonga, Cook Islands. Electronic address: p.argyle@mmr.gov.ck., Rhodes LL; Cawthron Institute, Private Bag 2, 98 Halifax St East, Nelson 7042, New Zealand., Smith KF; Cawthron Institute, Private Bag 2, 98 Halifax St East, Nelson 7042, New Zealand., Harwood DT; Cawthron Institute, Private Bag 2, 98 Halifax St East, Nelson 7042, New Zealand., Halafihi T; Ministry of Fisheries, P.O. Box 871, Nuku'alofa, Tongatapu, Tonga., Marsden ID; School of Biological Sciences, University of Canterbury, Private Bag 4800, 20 Kirkwood Ave, Christchurch 8041, New Zealand. |
---|---|
Jazyk: | angličtina |
Zdroj: | Harmful algae [Harmful Algae] 2023 Dec; Vol. 130, pp. 102524. Date of Electronic Publication: 2023 Nov 04. |
DOI: | 10.1016/j.hal.2023.102524 |
Abstrakt: | Benthic dinoflagellates that can cause illness, such as ciguatera poisoning (CP), are prevalent around the Pacific but are poorly described in many locations. This study represents the first ecological assessment of benthic harmful algae species in the Kingdom of Tonga, a country where CP occurs regularly. Surveys were conducted in June 2016 in the Tongatapu island group, and in June 2017 across three island groups: Ha'apai, Vava'u, and Tongatapu. Shallow subtidal coastal habitats were investigated by measuring water quality parameters and conducting quadrat surveys. Microalgae samples were collected using either macrophyte collection or the artificial substrate method. Benthic dinoflagellates (Gambierdiscus and/or Fukuyoa, Ostreopsis, and Prorocentrum) were counted using light microscopy, followed by molecular analyses (real-time PCR in 2016 and high throughput sequencing (metabarcoding) in 2017) to identify Gambierdiscus and Fukuyoa to species level. Six species were detected from the Tongatapu island group in 2016 (G. australes, G. carpenteri, G. honu, G. pacificus, F. paulensis, and F. ruetzleri) using real-time PCR. Using the metabarcoding approach in 2017, a total of eight species (G. australes, G. carpenteri, G. honu, G. pacificus, G. cheloniae, G. lewisii, G. polynesiensis, and F. yasumotoi) were detected. Species were detected in mixed assemblages of up to six species, with G. pacificus and G. carpenteri being the most frequently observed. Ha'apai had the highest diversity with eight species detected, which identifies this area as a Gambierdiscus diversity 'hotspot'. Vava'u and Tongatapu had three and six species found respectively. Gambierdiscus polynesiensis, a described ciguatoxin producer and proposed causative agent of CP was found only in Ha'apai and Vava'u in 2017, but not in Tongatapu in either year. Ostreopsis spp. and Prorocentrum spp. were also frequently observed, with Prorocentrum most abundant at the majority of sites. In 2016, the highest number of Gambierdiscus and/or Fukuyoa cells were observed on seagrass (Halodule uninervis) from Sopu, Tongatapu. In 2017, the highest numbers of Gambierdiscus and/or Fukuyoa from artificial substrate samples were recorded in the Halimeda dominant habitat at Neiafu Tahi, Vava'u, a low energy site. This raised the question of the effect of wave motion or currents on abundance measurements from artificial substrates. Differences in detection were noticed between macrophytes and artificial substrates, with higher numbers of species found on artificial substrates. This study provides a baseline of benthic dinoflagellate distributions and diversity for Tonga that may be used for future studies and the development of monitoring programmes. Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |