Improving PM 2.5 prediction in New Delhi using a hybrid extreme learning machine coupled with snake optimization algorithm.
Autor: | Masood A; Department of Civil Engineering, Jamia Millia Islamia University, New Delhi, India., Hameed MM; Department of Civil Engineering, Al-Maarif University College, Ramadi, Iraq. mohmmag1@gmail.com., Srivastava A; Department of Civil Engineering, Indian Institute of Technology (IIT) Kharagpur, Kharagpur, 721302, West Bengal, India., Pham QB; Faculty of Natural Sciences, Institute of Earth Sciences, University of Silesia in Katowice, Będzińska Street 60, 41-200, Sosnowiec, Poland., Ahmad K; Department of Civil Engineering, Jamia Millia Islamia University, New Delhi, India., Razali SFM; Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.; Smart and Sustainable Township Research Centre (SUTRA), Universiti Kebangsaan Malaysia (UKM), 43600, UKM Bangi, Selangor, Malaysia.; Green Engineering and Net Zero Solution (GREENZ), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia., Baowidan SA; Information Technology Department Faculty of Computing and IT, King Abdulaziz University, Jeddah, Saudi Arabia.; Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia. |
---|---|
Jazyk: | angličtina |
Zdroj: | Scientific reports [Sci Rep] 2023 Nov 29; Vol. 13 (1), pp. 21057. Date of Electronic Publication: 2023 Nov 29. |
DOI: | 10.1038/s41598-023-47492-z |
Abstrakt: | Fine particulate matter (PM (© 2023. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |