Nuclear Spin-Depleted, Isotopically Enriched 70 Ge/ 28 Si 70 Ge Quantum Wells.

Autor: Moutanabbir O; Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec, H3C 3A7, Canada., Assali S; Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec, H3C 3A7, Canada., Attiaoui A; Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec, H3C 3A7, Canada., Daligou G; Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec, H3C 3A7, Canada., Daoust P; Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec, H3C 3A7, Canada., Vecchio PD; Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec, H3C 3A7, Canada., Koelling S; Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec, H3C 3A7, Canada., Luo L; Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec, H3C 3A7, Canada., Rotaru N; Department of Engineering Physics, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec, H3C 3A7, Canada.
Jazyk: angličtina
Zdroj: Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2024 Feb; Vol. 36 (8), pp. e2305703. Date of Electronic Publication: 2023 Dec 10.
DOI: 10.1002/adma.202305703
Abstrakt: The p-symmetry of the hole wavefunction is associated with a weaker hyperfine interaction, which makes hole spin qubits attractive candidates to implement quantum processors. However, recent studies demonstrate that hole qubits are still very sensitive to nuclear spin bath, thus highlighting the need for nuclear spin-free germanium (Ge) qubits to suppress this decoherence channel. Herein, this work demonstrates the epitaxial growth of 73 Ge- and 29 Si-depleted, isotopically enriched 70 Ge/silicon-germanium (SiGe) quantum wells. The growth is achieved by reduced pressure chemical vapor deposition using isotopically purified monogermane 70 GeH 4 and monosilane 28 SiH 4 with an isotopic purity higher than 99.9% and 99.99%, respectively. The quantum wells consist of a series of 70 Ge/SiGe heterostructures grown on Si wafers. The isotopic purity is investigated using atom probe tomography (APT) following an analytical procedure addressing the discrepancies caused by the overlap of isotope peaks in mass spectra. The nuclear spin background is found to be sensitive to the growth conditions with the lowest concentration of 73 Ge and 29 Si is below 0.01% in the Ge well and SiGe barriers. The measured average distance between nuclear spins reaches 3-4 nm in 70 Ge/ 28 Si 70 Ge, which is an order of magnitude larger than in natural Ge/SiGe heterostructures. The spread of the hole wavefunction and the residual nuclear spin background in APT voluminals comparable to the size of realistic quantum dots are also discussed.
(© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.)
Databáze: MEDLINE