External Validation and Recalibration of a Mortality Prediction Model for Patients with Ischaemic Stroke.

Autor: García-Torrecillas JM; Emergency and Research Unit, Torrecárdenas University Hospital, 04009 Almería, Spain.; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain., Lea-Pereira MC; Servicio de Medicina Interna, Hospital Universitario de Poniente, 04700 Almería, Spain., Amaya-Pascasio L; Stroke Centre, Department of Neurology, Torrecárdenas University Hospital, 04009 Almería, Spain., Rosa-Garrido C; FIBAO, Hospital Universitario de Jaén, Servicio Andaluz de Salud, 23007 Jaén, Spain., Quesada-López M; Stroke Centre, Department of Neurology, Torrecárdenas University Hospital, 04009 Almería, Spain., Reche-Lorite F; Departamento de Matemáticas, Universidad de Almería, 04120 Almería, Spain., Iglesias-Espinosa M; Stroke Centre, Department of Neurology, Torrecárdenas University Hospital, 04009 Almería, Spain., Aparicio-Mota A; Unidad de Investigación Biomédica, Hospital Universitario Torrecárdenas, 04009 Almería, Spain., Galván-Espinosa J; FIBAO, Hospital Universitario Torrecárdenas, Servicio Andaluz de Salud, 04009 Almería, Spain., Martínez-Sánchez P; Stroke Centre, Department of Neurology, Torrecárdenas University Hospital, 04009 Almería, Spain.; Faculty of Health Sciences, Health Research Center (CEINSA), University of Almeria, Carretera de Sacramento s/n, 04120 Almeria, Spain., Rodríguez-Barranco M; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain.; Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain.
Jazyk: angličtina
Zdroj: Journal of clinical medicine [J Clin Med] 2023 Nov 18; Vol. 12 (22). Date of Electronic Publication: 2023 Nov 18.
DOI: 10.3390/jcm12227168
Abstrakt: Background: Stroke is a highly prevalent disease that can provoke severe disability. We evaluate a predictive model based on the Minimum Basic Data Set (MBDS) compiled by the Spain Health Ministry, obtained for the period 2008-2012 for patients with ischaemic stroke in Spain, to establish the model's validity and to optimise its calibration. The MBDS is the main clinical-administrative database for hospitalisations recorded in Spain, and to our knowledge, no predictive models for stroke mortality have previously been developed using this resource. The main study aim is to perform an external validation and recalibration of the coefficients of this predictive model with respect to a chronologically later cohort.
Material and Methods: External validation (testing the model on a different cohort to assess its performance) and recalibration (validation with optimisation of model coefficients) were performed using the MBDS for patients admitted for ischaemic stroke in the period 2016-2018. A cohort study was designed, in which a recalibrated model was obtained by applying the variables of the original model without their coefficients. The variables from the original model were then applied to the subsequent cohort, together with the coefficients from the initial model. The areas under the curve (AUC) of the recalibration and the external validation procedure were compared.
Results: The recalibrated model produced an AUC of 0.743 and was composed of the following variables: age (odds ratio, OR:1.073), female sex (OR:1.143), ischaemic heart disease (OR:1.192), hypertension (OR:0.719), atrial fibrillation (OR:1.414), hyperlipidaemia (OR:0.652), heart failure (OR:2.133) and posterior circulation stroke (OR: 0.755). External validation produced an AUC of 0.726.
Conclusions: The recalibrated clinical model thus obtained presented moderate-high discriminant ability and was generalisable to predict death for patients with ischaemic stroke. Rigorous external validation slightly decreased the AUC but confirmed the validity of the baseline model for the chronologically later cohort.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje