Emergent properties of free-living nematode assemblages exposed to multiple stresses.

Autor: Oliveira NR; Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, CEP: 96203-900, Campus Carreiros, Rio Grande, RS, Brazil. Electronic address: nro@furg.br., Altafim GL; Universidade Federal de São Paulo, Campus Baixada Santista, Instituto do Mar, Rua Carvalho de Mendonça, 144, CEP: 11070-100, Santos, SP, Brazil., Alves AV; Universidade de São Paulo, Instituto Oceanográfico, Laboratório de Química Inorgânica Marinha, Pça do Oceanográfico, 191, Cidade Universitária, CEP: 05508-120, São Paulo, SP, Brazil., Choueri RB; Universidade Federal de São Paulo, Campus Baixada Santista, Instituto do Mar, Rua Carvalho de Mendonça, 144, CEP: 11070-100, Santos, SP, Brazil., Zanette J; Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, CEP: 96203-900, Campus Carreiros, Rio Grande, RS, Brazil., Figueira RCL; Universidade de São Paulo, Instituto Oceanográfico, Laboratório de Química Inorgânica Marinha, Pça do Oceanográfico, 191, Cidade Universitária, CEP: 05508-120, São Paulo, SP, Brazil., Gallucci F; Universidade Federal de São Paulo, Campus Baixada Santista, Instituto do Mar, Rua Carvalho de Mendonça, 144, CEP: 11070-100, Santos, SP, Brazil.
Jazyk: angličtina
Zdroj: The Science of the total environment [Sci Total Environ] 2024 Feb 20; Vol. 912, pp. 168790. Date of Electronic Publication: 2023 Nov 22.
DOI: 10.1016/j.scitotenv.2023.168790
Abstrakt: Biological communities are currently facing multi-stressor scenarios whose ecological impacts are challenging to estimate. In that respect, considering the complex nature of ecosystems and types and interaction among stressors is mandatory. Microcosm approaches using free-living nematode assemblages can effectively be used to assess complexity since they preserve the interactions inherent to complex systems when testing for multiple stress effects. In this study, we investigated the interaction effects of three stress factors, namely i-metallic mixture of Cu, Pb, Zn, and Hg (control [L0], low, [L1] and high [L2]), ii- CO 2 -driven acidification (pH 7.6 and 8.0), and iii- temperature rise (26 and 28 °C), on estuarine free-living nematode assemblages. Metal contamination had the greatest influence on free-living nematode assemblages, irrespective of pH and temperature scenarios. Interestingly, whilst the most abundant free-living nematode genera showed significant decreases in their densities when exposed to contamination, other, less abundant, genera were apparently favored and showed significantly higher densities in contaminated treatments. The augmented densities of tolerant genera may be attributed to indirect effects resulting from the impacts of toxicity on other components of the system, indicating the potential for emergent effects in response to stress. Temperature and pH interacted significantly with contamination. Whilst temperature rise had potentialized contamination effects, acidification showed the opposite trend, acting as a buffer to the effects of contamination. Such results show that temperature rise and CO 2 -driven acidification interact with contamination on coastal waters, highlighting the importance of considering the intricate interplay of these co-occurring stressors when assessing the ecological impacts on coastal ecosystems.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE