Evolutionary history of a cold-adapted limnephilid caddisfly: Effects of climate change and topography on genetic structure.

Autor: Suzuki H; Division of Mountain and Environmental Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan., Takenaka M; Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan; Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan., Tojo K; Division of Mountain and Environmental Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan; Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan; Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan. Electronic address: ktojo@shinshu-u.ac.jp.
Jazyk: angličtina
Zdroj: Molecular phylogenetics and evolution [Mol Phylogenet Evol] 2024 Feb; Vol. 191, pp. 107967. Date of Electronic Publication: 2023 Nov 23.
DOI: 10.1016/j.ympev.2023.107967
Abstrakt: The distribution of organisms is influenced by complex factors such as the phylogenetic evolutionary histories of species, the physiological and ecological characteristics of organisms, climate, and geographical and geohistorical features. In this study, we focused on a caddisfly, Asynarchus sachalinensis (Trichoptera: Limnephilidae), which has adapted to cold habitats. From phylogeographic analyses based on the mitochondrial DNA (mtDNA) cytochrome c oxidase subunit I (COI) and 16S rRNA regions and the nuclear DNA (nDNA) 18S rRNA, 28S rRNA, carbamoyl-phosphate synthetase (CAD), elongation factor-1 alpha (EF1-α), and RNA polymerase II (POLII) regions, two distinct genetic clades were detected. Clade I was shown to be widely distributed from Sakhalin to Honshu, whereas Clade II was only distributed within Honshu. The distributions of these clades overlapped in Honshu. The habitats were located at relatively lower altitudes for Clade I and higher altitudes for Clade II. The divergence time of these clades was estimated to be during the Pleistocene, indicating that repeated climatic changes facilitated distributional shifts. Haplotype network and demographic analyses based on the mtDNA COI region showed contrasting genetic structures in the two clades. It was indicated that the population sizes of Clade I had expanded rapidly in a recent period, whereas Clade II had maintained stable population sizes. The habitats of Clade II were typically isolated and scattered at high altitudes, resulting in restricted migration and dispersal because of their discontinuous "Sky Island" habitats. The habitats of Clade I were located at relatively low altitudes, and it was assumed that the populations were continuous, which resulted in a higher frequency of migration and dispersal between populations. Thus, differences in the spatial scale of the adapted habitats of each clade may have resulted in different patterns of population connectivity and fragmentation associated with repeated climatic changes during the Pleistocene. Our study provided new insight into the distributional patterns of cold-adapted aquatic insects in the Japanese Archipelago. Furthermore, the distributional shifts predicted by ecological niche modeling under future climatic change conditions were different for each clade. Therefore, different principles are required in the assessment of each clade to predict temporal changes in their distributions.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE