Green synthesis of zinc oxide nanoparticles using novel bacterium strain (Bacillus subtilis NH1-8) and their in vitro antibacterial and antibiofilm activities against Salmonellatyphimurium.

Autor: Vosoughian N; Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran., Asadbeygi M; Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran., Mohammadi A; Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran. Electronic address: a.mohammadi@alzahra.ac.ir., Soudi MR; Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran.
Jazyk: angličtina
Zdroj: Microbial pathogenesis [Microb Pathog] 2023 Dec; Vol. 185, pp. 106457. Date of Electronic Publication: 2023 Nov 21.
DOI: 10.1016/j.micpath.2023.106457
Abstrakt: Zinc oxide nanoparticles (ZnO NPs) are used in a range of applications, including food packaging, preservation, and storage. In the current investigation, extracellular green synthesis of ZnO NPs through an simple, eco-friendly, and rapid approach using a novel bacterial strain (Bacillus subtilis NH1-8) was studied. To assess the morphological, optical, and structural properties of ZnO NPs, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, and X-ray diffraction (XRD) techniques were carried out. In addition, disk diffusion, minimum bactericidal concentration (MBC), and minimum inhibitory concentration (MIC) methods were performed to determine the antibacterial activity of ZnO NPs. The average size of biosynthesized ZnO NPs was 39 nm, exhibiting semi-spherical, which was confirmed by TEM analyses. The UV-vis spectroscopy exhibited the absorption peak at 200-800nm. The ZnO NPs have shown effective antimicrobial and antibiofilm activities against S. typhimurium. Thus, biosynthesized ZnO NPs could be exploited as a breakthrough technology in the surface coating of food containers and cans to minimize contamination by S. typhimurium.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE