ULK1 seen at the single-molecule level during autophagy initiation.

Autor: Banerjee C; School of Physics and Astronomy, University of Minnesota, Twin Cities, USA., Puchner EM; School of Physics and Astronomy, University of Minnesota, Twin Cities, USA., Kim DH; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, USA.
Jazyk: angličtina
Zdroj: Autophagy [Autophagy] 2024 Mar; Vol. 20 (3), pp. 707-708. Date of Electronic Publication: 2023 Dec 02.
DOI: 10.1080/15548627.2023.2286078
Abstrakt: Macroautophagy/autophagy research often involves overexpressing proteins to investigate their localization, function and activity. However, this approach can disturb the inherent balance of cellular components, potentially affecting the integrity of the autophagy process. With the advent of genome-editing techniques like CRISPR-Cas9, it is now possible to tag endogenous proteins with fluorescent markers, enabling the study of their behaviors under more physiologically relevant conditions. Nevertheless, conventional microscopy methods have limitations in characterizing the behaviors of proteins expressed at endogenous levels. This challenge can be overcome by single-molecule localization microscopy (SMLM) methods, which provide single-molecule sensitivity and super-resolution imaging capabilities. In our recent study, we used SMLM in combination with genome editing to explore the behavior of endogenous ULK1 during autophagy initiation, yielding unprecedented insights into the autophagy initiation process. Abbreviation: ATG13: autophagy related 13; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; ER: endoplasmic reticulum; GABARAPL1: GABA type A receptor associated protein like 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTORC1: mechanistic target of rapamycin kinase complex 1; PALM: photo-activated localization microscopy; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15: phosphoinositide-3-kinase regulatory subunit 4; PtdIns3P: phosphatidylinositol-3-phosphate; SMLM: single-molecule localization microscopy; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2.
Databáze: MEDLINE