Branched microtubule nucleation and dynein transport organize RanGTP asters in Xenopus laevis egg extract.

Autor: Scrofani J; Quantitative Cell Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain., Ruhnow F; Quantitative Cell Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain., Chew WX; Quantitative Cell Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain., Normanno D; Quantitative Cell Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain., Nedelec F; Sainsbury Laboratory, Cambridge University, Bateman street, CB2 1LR Cambridge, UK., Surrey T; Quantitative Cell Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.; Institución Catalana de Investigación y Estudios Avanzados (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain., Vernos I; Quantitative Cell Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.; Institución Catalana de Investigación y Estudios Avanzados (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.
Jazyk: angličtina
Zdroj: Molecular biology of the cell [Mol Biol Cell] 2024 Jan 01; Vol. 35 (1), pp. ar12. Date of Electronic Publication: 2023 Nov 22.
DOI: 10.1091/mbc.E23-10-0407
Abstrakt: Chromosome segregation relies on the correct assembly of a bipolar spindle. Spindle pole self-organization requires dynein-dependent microtubule (MT) transport along other MTs. However, during M-phase RanGTP triggers MT nucleation and branching generating polarized arrays with nonastral organization in which MT minus ends are linked to the sides of other MTs. This raises the question of how branched-MT nucleation and dynein-mediated transport cooperate to organize the spindle poles. Here, we used RanGTP-dependent MT aster formation in Xenopus laevis ( X. laevis ) egg extract to study the interplay between these two seemingly conflicting organizing principles. Using temporally controlled perturbations of MT nucleation and dynein activity, we found that branched MTs are not static but instead dynamically redistribute over time as poles self-organize. Our experimental data together with computer simulations suggest a model where dynein together with dynactin and NuMA directly pulls and move branched MT minus ends toward other MT minus ends.
Databáze: MEDLINE