Minimizing Interfacial Recombination in 1.8 eV Triple-Halide Perovskites for 27.5% Efficient All-Perovskite Tandems.

Autor: Yang F; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.; National Renewable Energy Laboratory, Golden, Colorado, 80401, USA., Tockhorn P; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Musiienko A; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Lang F; Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany., Menzel D; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Macqueen R; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Köhnen E; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Xu K; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Mariotti S; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Mantione D; POLYMAT, University of the Basque Country UPV/EHU, Av. Tolosa 72, Donostia-San Sebastián, 20018, Spain.; IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain.; POLYKEY s.l., Av. Tolosa 72, Donostia-San Sebastián, 20018, Spain., Merten L; Institute of Applied Physics, University of Tübingen, 72076, Tübingen, Germany., Hinderhofer A; Institute of Applied Physics, University of Tübingen, 72076, Tübingen, Germany., Li B; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Wargulski DR; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Harvey SP; Materials, Chemical and Computational Sciences (MCCS), National Renewable Energy Laboratory, Golden, CO, 80401, USA., Zhang J; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Scheler F; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Berwig S; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Roß M; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Thiesbrummel J; Clarendon Laboratory, Department of Advanced Materials and Interfaces for Photovoltaic Solar Cells, University of Oxford, Parks Road, Oxford, OX1 3PU, UK., Al-Ashouri A; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Brinkmann KO; Institute of Electronic Devices, University of Wuppertal, 42119, Wuppertal, Germany.; Wuppertal Center for Smart Materials & Systems, University of Wuppertal, 42119, Wuppertal, Germany., Riedl T; Institute of Electronic Devices, University of Wuppertal, 42119, Wuppertal, Germany.; Wuppertal Center for Smart Materials & Systems, University of Wuppertal, 42119, Wuppertal, Germany., Schreiber F; Institute of Applied Physics, University of Tübingen, 72076, Tübingen, Germany., Abou-Ras D; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Snaith H; Clarendon Laboratory, Department of Advanced Materials and Interfaces for Photovoltaic Solar Cells, University of Oxford, Parks Road, Oxford, OX1 3PU, UK., Neher D; Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany., Korte L; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany., Stolterfoht M; Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany.; Electronic Engineering Department, The Chinese University of Hong Kong, Hong Kong SAR, China., Albrecht S; Division Solar Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.; Faculty of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany.
Jazyk: angličtina
Zdroj: Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2024 Feb; Vol. 36 (6), pp. e2307743. Date of Electronic Publication: 2023 Dec 06.
DOI: 10.1002/adma.202307743
Abstrakt: All-perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide-bandgap (WBG) perovskites with higher open-circuit voltage (V OC ) are essential to further improve the tandem solar cells' performance. Here, a new 1.8 eV bandgap triple-halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light-induced magneto-transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady-state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V V OC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.
(© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.)
Databáze: MEDLINE