Detection of Methicillin-Resistant Staphylococcus Aureus using vancomycin conjugated silica-based fluorescent nanoprobe.

Autor: Sifana NO; Master Program of Nanotechnology, Graduate School, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia; Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Jawa Barat 41032, Indonesia., Melyna; Master Program of Analytical Chemistry, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia., Septiani NLW; Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia; BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia., Septama AW; Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang, Banten 15134, Indonesia., Manurung RV; BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia; Research Centre for Electronics, National Research and Innovation Agency (BRIN), Komplek LIPI Gd. 20, Jl. Cisitu Lama, Dago, Kecamatan Coblong, Bandung, Jawa Barat 40135, Indonesia., Yuliarto B; Master Program of Nanotechnology, Graduate School, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia; Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Jawa Barat 41032, Indonesia; BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia. Electronic address: brian@itb.ac.id., Jenie SNA; BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia; Research Centre for Chemistry, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK, Building 452, Serpong, South Tangerang, Banten 15314, Indonesia. Electronic address: siti043@brin.go.id.
Jazyk: angličtina
Zdroj: Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy [Spectrochim Acta A Mol Biomol Spectrosc] 2024 Feb 15; Vol. 307, pp. 123643. Date of Electronic Publication: 2023 Nov 13.
DOI: 10.1016/j.saa.2023.123643
Abstrakt: Methicillin-Resistant Staphylococcus Aureus (MRSA) is a worldwide major pathogenic bacteria that has emerged over the past three decades as the leading cause of nosocomial and community-acquired infections. Biosensors can provide rapid, sensitive, and selective detection of the presence and number of bacteria in various environments. Herein, a novel fluorescence nanoprobe was designed as a biosensor for MRSA detection using dye-incorporated silica nanoparticles (FSiNP). Based on the results of specific surface area analysis using the Brauner Emmett-Teller (BET) method, the surface area of the nanoparticles was obtained at 377.127 m 2 /g, and the X-ray diffraction (XRD) analysis confirmed that it was in the amorphous phase. Vancomycin, as the bioreceptor, was immobilized on the silica surface through a hydrosilylation reaction, generating the biosensing platform FSiNP-Van. Each modification step was corroborated by the Fourier Transform Infra-Red (FTIR) spectroscopy. The sensing principle was based on the fluorescence-quenching mechanism of FSiNP-Van at 515 nm obtaining a rapid response time of 20 min. The FSiNP-Van nanoprobe provided a wide linear concentration range of 10-10 6 CFU/mL with a limit of MRSA detection calculated at 1 CFU/mL. The fluorescent nanoprobe demonstrated here is expected to find applications in point-of-care (POC) diagnostics to detect the presence of MRSA bacteria.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE