A strategy for deciphering the bioactive metabolites of Farfarae Flos by the inter-individual variability of the antitussive effect.
Autor: | Guo Y; Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China., Yang L; Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China., Qin X; Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China., Li Z; Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China. Electronic address: lizhenyu@sxu.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of pharmaceutical and biomedical analysis [J Pharm Biomed Anal] 2024 Jan 20; Vol. 238, pp. 115856. Date of Electronic Publication: 2023 Nov 08. |
DOI: | 10.1016/j.jpba.2023.115856 |
Abstrakt: | Farfarae Flos is a commonly used traditional herb for the treatment of respiratory disorders. In this study, ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry combined with the mass defect filter method was used for the qualitative analysis of Farfarae Flos metabolites in the lung tissues. Then a method for the simultaneous determination of 14 Farfarae Flos metabolites was developed and validated in terms of specificity, linearity, precision and accuracy, matrix effect and recovery. The method was applied to compare the lung tissue of Farfarae Flos treated mice, and 10 caffeoylquinic acid metabolites were higher in the mice with better antitussive effect. Further network pharmacology analysis and molecular docking results showed that these metabolites played an important role in the antitussive effect of Farfarae Flos. This study presented a novel strategy for deciphering the active compounds of herbal medicine by inter-individual variability of bioactivities. Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2023 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |