Modification of cellulosic adsorbent via iron-based metal phenolic networks coating for efficient removal of chromium ion.

Autor: Lunardi VB; Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia., Cheng KC; Institute of Biotechnology, National Taiwan University, 1 Roosevelt Rd., Section 4, Taipei 10617, Taiwan; Graduate Institute of Food Science and Technology, National Taiwan University, 1 Roosevelt Rd., Section 4, Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan., Lin SP; School of Food Safety, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Research Center of Biomedical Device, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan., Angkawijaya AE; Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan. Electronic address: artikelisa.angkawijaya@riken.jp., Go AW; Chemical Engineering Department, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd., Taipei 10607, Taiwan., Soetaredjo FE; Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia., Ismadji S; Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia., Hsu HY; School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong 518057, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, Hong Kong, China., Hsieh CW; Department of Food Science and Biotechnology, National Chung Hsing University, South Dist., Taichung City 40227, Taiwan; Department of Medical Research, China Medical University Hospital, North Dist., Taichung City 404333, Taiwan., Santoso SP; Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, East Java, Indonesia. Electronic address: shella_p5@yahoo.com.
Jazyk: angličtina
Zdroj: Journal of hazardous materials [J Hazard Mater] 2024 Feb 15; Vol. 464, pp. 132973. Date of Electronic Publication: 2023 Nov 09.
DOI: 10.1016/j.jhazmat.2023.132973
Abstrakt: Surface modification of durian rind cellulose (DCell) was done by utilizing the strong coordination effect of polyphenol-based metal phenolic networks (MPNs). MPNs from Fe(III)-tannic acid (FTN) and Fe(III)-gallic acid (FGN) were coated on DCell via a self-assembly reaction at pH 8, resulting in adsorbent composites of FTN@DCell and FGN@DCell for removal of Cr(VI). Batch adsorption experiments revealed that FTN coating resulted in an adsorbent composite with higher adsorption capacity than FGN coating, owing to the greater number of additional adsorption sites from phenolic hydroxyl groups of tannic acid. FTN@DCell exhibits an equilibrium adsorption capacity at 30°C of 110.9 mg/g for Cr(VI), significantly higher than FGN@DCell (73.63 mg/g); the adsorption capacity was increased at higher temperature (i.e., 155.8 and 116.8 mg/g at 50°C for FTN@DCell and FGN@DCell, respectively). Effects of pH, adsorbent dose, initial concentration, and coexisting ions on Cr(VI) removal were investigated. The kinetics fractal-based model Brouers-Sotolongo indicates the 1st and 2nd order reaction for Cr(VI) adsorption on FTN@DCell and FGN@DCell, respectively. The isotherm data can be described with a fractal-based model, which implies the heterogeneous nature of the adsorbent surface sites. The Cr(VI) adsorption via surface complexation with phenolic hydroxyl groups was confirmed by evaluating the functional groups shifting. FGN@DCell and FTN@DCell were found to have good reusability, maintaining over 50 % of their adsorption efficiency after four adsorption-desorption cycles. Environmental assessment with Arabidopsis thaliana demonstrated their potential in eliminating the Cr(VI) phytotoxic effect. Thus, this study has shown the efficient and economical conversion of durian waste into environmentally benign adsorbent for heavy metal treatment.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE