High-fidelity 3D live-cell nanoscopy through data-driven enhanced super-resolution radial fluctuation.
Autor: | Laine RF; Laboratory for Molecular Cell Biology, University College London, London, UK.; The Francis Crick Institute, London, UK.; Micrographia Bio, Translation and Innovation Hub, London, UK., Heil HS; Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal., Coelho S; Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal., Nixon-Abell J; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.; Cambridge Institute for Medical Research, Cambridge Univeristy, Cambridge, UK., Jimenez A; Aix-Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France., Wiesner T; Aix-Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France., Martínez D; Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal., Galgani T; Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Paris, France.; Revvity Signals, Tres Cantos, Madrid, Spain., Régnier L; Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Paris, France., Stubb A; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.; Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Munster, Germany., Follain G; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland., Webster S; EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia., Goyette J; EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia., Dauphin A; Unite Genetique et Biologie du Développement U934, PICT-IBiSA, Institut Curie, INSERM, CNRS, PSL Research University, Paris, France., Salles A; Institut Pasteur, Université Paris Cité, Unit of Technology and Service Photonic BioImaging (UTechS PBI), C2RT, Paris, France., Culley S; Laboratory for Molecular Cell Biology, University College London, London, UK.; Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK., Jacquemet G; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.; Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland.; InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland., Hajj B; Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Paris, France. bassam.hajj@curie.fr., Leterrier C; Aix-Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France. christophe.leterrier@univ-amu.fr., Henriques R; Laboratory for Molecular Cell Biology, University College London, London, UK. rjhenriques@igc.gulbenkian.pt.; The Francis Crick Institute, London, UK. rjhenriques@igc.gulbenkian.pt.; Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal. rjhenriques@igc.gulbenkian.pt. |
---|---|
Jazyk: | angličtina |
Zdroj: | Nature methods [Nat Methods] 2023 Dec; Vol. 20 (12), pp. 1949-1956. Date of Electronic Publication: 2023 Nov 13. |
DOI: | 10.1038/s41592-023-02057-w |
Abstrakt: | Live-cell super-resolution microscopy enables the imaging of biological structure dynamics below the diffraction limit. Here we present enhanced super-resolution radial fluctuations (eSRRF), substantially improving image fidelity and resolution compared to the original SRRF method. eSRRF incorporates automated parameter optimization based on the data itself, giving insight into the trade-off between resolution and fidelity. We demonstrate eSRRF across a range of imaging modalities and biological systems. Notably, we extend eSRRF to three dimensions by combining it with multifocus microscopy. This realizes live-cell volumetric super-resolution imaging with an acquisition speed of ~1 volume per second. eSRRF provides an accessible super-resolution approach, maximizing information extraction across varied experimental conditions while minimizing artifacts. Its optimal parameter prediction strategy is generalizable, moving toward unbiased and optimized analyses in super-resolution microscopy. (© 2023. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |