Lignocellulosic ethanol and butanol production by Saccharomyces cerevisiae and Clostridium beijerinckii co-culture using non-detoxified corn stover hydrolysate.

Autor: Jawad M; MOE Key Laboratory of Bio-Intelligent Manufacturing, Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China., Wang H; MOE Key Laboratory of Bio-Intelligent Manufacturing, Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China., Wu Y; MOE Key Laboratory of Bio-Intelligent Manufacturing, Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China. Electronic address: wuyouduo@dlut.edu.cn., Rehman O; MOE Key Laboratory of Bio-Intelligent Manufacturing, Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China., Song Y; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China., Xu R; Yunnan Provincial Rural Energy Engineering Key Laboratory, Kunming 650600, China., Zhang Q; SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116041, China., Gao H; SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116041, China., Xue C; MOE Key Laboratory of Bio-Intelligent Manufacturing, Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China. Electronic address: xue.1@dlut.edu.cn.
Jazyk: angličtina
Zdroj: Journal of biotechnology [J Biotechnol] 2024 Jan 10; Vol. 379, pp. 1-5. Date of Electronic Publication: 2023 Nov 07.
DOI: 10.1016/j.jbiotec.2023.11.002
Abstrakt: Considering global economic and environmental -benefits, green renewable biofuels such as ethanol and butanol are considered as sustainable alternatives to fossil fuels. Thus, developing a co-culture strategy for ethanol and butanol production by Saccharomyces cerevisiae and Clostridium beijerinckii has emerged as a promising approach for biofuel production from lignocellulosic biomass. This study developed a co-culture of S. cerevisiae and C. beijerinckii for ethanol and butanol production from non-detoxified corn stover hydrolysate. By firstly inoculating 3 % S. cerevisiae and then 7 % C. beijerinckii with 8-10 h time intervals, the optimized co-culture process gave 24.0 g/L ABE (20.8 g/L ethanol and 2.4 g/L butanol), obtaining ABE yield and productivity of 0.421 g/g and 0.55 g/L/h. The demonstrated co-culture strategy made full use of hexose and pentose in hydrolysate and contributed to total yield and efficiency compared to conventional ethanol or ABE fermentation, indicating its great potential for developing economically feasible and sustainable bioalcohols production.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023. Published by Elsevier B.V.)
Databáze: MEDLINE