Numerical evaluation and experimental validation of fluid flow behavior within an organ-on-a-chip model.
Autor: | Carvalho V; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; ALGORITMI Center/LASI, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga/Guimarães, Portugal. Electronic address: violeta.carvalho@dps.uminho.pt., Gonçalves IM; MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal., Rodrigues N; ALGORITMI Center/LASI, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal., Sousa P; Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga/Guimarães, Portugal., Pinto V; Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga/Guimarães, Portugal., Minas G; Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga/Guimarães, Portugal., Kaji H; Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan., Shin SR; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA., Rodrigues RO; Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga/Guimarães, Portugal., Teixeira SFCF; ALGORITMI Center/LASI, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal., Lima RA; MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; CEFT - Transport Phenomena Research Center, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal. |
---|---|
Jazyk: | angličtina |
Zdroj: | Computer methods and programs in biomedicine [Comput Methods Programs Biomed] 2024 Jan; Vol. 243, pp. 107883. Date of Electronic Publication: 2023 Oct 28. |
DOI: | 10.1016/j.cmpb.2023.107883 |
Abstrakt: | Background and Objective: By combining biomaterials, cell culture, and microfluidic technology, organ-on-a-chip (OoC) platforms have the ability to reproduce the physiological microenvironment of human organs. For this reason, these advanced microfluidic devices have been used to resemble various diseases and investigate novel treatments. In addition to the experimental assessment, numerical studies of biodevices have been performed aiming at their improvement and optimization. Despite considerable progress in numerical modeling of biodevices, the validation of these computational models through comparison with experimental assays remains a significant gap in the current literature. This step is critical to ensure the accuracy and reliability of numerical models, and consequently enhance confidence in their predictive results. The aim of the present work is to develop a numerical model capable of reproducing the fluid flow behavior within an OoC, for future investigations, encompassing the geometry optimization. Methods: In this study, the validation of a numerical model for an OoC microfluidic device was undertaken. This comprised both quantitative and qualitative assessments of trace microparticles flowing through a physical OoC model. High-speed microscopy images of the flow, using a blood analog fluid, were analyzed and compared with the numerical simulations run using the Ansys Fluent software. For a qualitative analysis, the particles' paths through the inlet and bifurcations were observed whereas, for a quantitative analysis, the particle velocities were measured. Furthermore, oxygen transport was simulated and evaluated for different Reynolds numbers. Results: In both qualitative and quantitative analyses, the results predicted by the numerical model and the ones outputted by the experimental model were in good agreement. These findings underscore the capability and potential of the developed numerical model. The examination of oxygen transport at various vertical positions within the organoid has revealed that for lower positions, oxygen transport predominantly occurs through diffusion, leading to a symmetric distribution of oxygen. Contrastingly, the convection phenomenon becomes more evident in the upper region of the organoid. Conclusions: The successful validation of the numerical model against experimental data shows its accuracy and reliability in simulating the fluid flow within the OoC, which consequently can expedite the OoC design process by reducing the need for prototypes' fabrication and costly laboratory experiments. Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |