Improving mammography interpretation for both novice and experienced readers: a comparative study of two commercial artificial intelligence software.

Autor: Kim HJ; Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea., Choi WJ; Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea. wjc@amc.seoul.kr., Gwon HY; Department of Radiology, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-Ro 170-Gil, Dongan-Gu, Anyang-Si, Gyeonggi-Do, 14068, South Korea., Jang SJ; Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea., Chae EY; Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea., Shin HJ; Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea., Cha JH; Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea., Kim HH; Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
Jazyk: angličtina
Zdroj: European radiology [Eur Radiol] 2024 Jun; Vol. 34 (6), pp. 3924-3934. Date of Electronic Publication: 2023 Nov 08.
DOI: 10.1007/s00330-023-10422-8
Abstrakt: Objectives: To evaluate the improvement of mammography interpretation for novice and experienced radiologists assisted by two commercial AI software.
Methods: We compared the performance of two AI software (AI-1 and AI-2) in two experienced and two novice readers for 200 mammographic examinations (80 cancer cases). Two reading sessions were conducted within 4 weeks. The readers rated the likelihood of malignancy (range, 1-7) and the percentage probability of malignancy (range, 0-100%), with and without AI assistance. Differences in AUROC, sensitivity, and specificity were analyzed.
Results: Mean AUROC increased in both novice (0.86 to 0.90 with AI-1 [p = 0.005]; 0.91 with AI-2 [p < 0.001]) and experienced readers (0.87 to 0.92 with AI-1 [p < 0.001]; 0.90 with AI-2 [p = 0.004]). Sensitivities increased from 81.3 to 88.8% with AI-1 (p = 0.027) and to 91.3% with AI-2 (p = 0.005) in novice readers, and from 81.9 to 90.6% with AI-1 (p = 0.001) and to 87.5% with AI-2 (p = 0.016) in experienced readers. Specificity did not decrease significantly in both novice (p > 0.999, both) and experienced readers (p > 0.999 with AI-1 and 0.282 with AI-2). There was no significant difference in the performance change depending on the type of AI software (p > 0.999).
Conclusion: Commercial AI software improved the diagnostic performance of both novice and experienced readers. The type of AI software used did not significantly impact performance changes. Further validation with a larger number of cases and readers is needed.
Clinical Relevance Statement: Commercial AI software effectively aided mammography interpretation irrespective of the experience level of human readers.
Key Points: • Mammography interpretation remains challenging and is subject to a wide range of interobserver variability. • In this multi-reader study, two commercial AI software improved the sensitivity of mammography interpretation by both novice and experienced readers. The type of AI software used did not significantly impact performance changes. • Commercial AI software may effectively support mammography interpretation irrespective of the experience level of human readers.
(© 2023. The Author(s), under exclusive licence to European Society of Radiology.)
Databáze: MEDLINE