Autor: |
Lolas MA; Universidad de Talca, Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Facultad de Ciencias Agrarias, Campus Talca, Avenida Lircay S/N, Talca, Chile, 3460000; mlolas@utalca.cl., Latorre BA; Pontificia Universidad Catolica, Facultad de Agronomia e Ingenieria Forestal, Casilla 306-22, Santiago, Santiago, Chile, 833-1010; blatorre@uc.cl., Ferrada E; Universidad Austral de Chile, 28040, Instituto de Producción y Sanidad Vegetal, Independencia 631, VALDIVIA, REGION DE LOS RIOS, Chile, 5090000; enrique.ferrada@uach.cl., Grinbergs D; Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Fruit Pathology Lab, Vicente Méndez 515, Chillán, Nuble, Chile, 3780000; dgrinbergs@inia.cl., Chilian J; Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Chillán, VIII, Chile; jchilian@inia.cl., Ortega-Farias S; UNIVERSIDAD DE TALCA, DEPARTAMENTO DE PRODUCCION AGRICOLA, TALCA, TALCA, Chile; sortega@utalca.cl., Campillay-Llanos W; UNIVERSIDAD DE TALCA, DEPARTAMENTO DE PRODUCCION AGRICOLA, TALCA, TALCA, Chile; wcampillay@utalca.cl., Díaz GA; UNIVERSIDAD DE TALCA, DEPARTAMENTO DE PRODUCCION AGRICOLA, AV. LIRCAY S/N, FACULTAD DE CIENCIAS AGRARIAS, TALCA, TALCA, Chile, 3460000; g.diaz@utalca.cl. |
Abstrakt: |
The European hazelnut (Corylus avellana) is an important fruit crop cultivated in Chile, with over 17,000 ha planted (46%) in the Maule region, central Chile. During a routine orchard survey in seasons 2020-2021 and 2021-2022, in the Maule region, canker and dieback symptoms were observed in two commercial orchards of European hazelnut cv. Tonda Di Giffoni in San Rafael (8-year-olds) and Linares (15-year-olds), with an incidence between 10% and 36%, respectively, based on external symptoms. Twenty symptomatic branches exhibiting cankers, reduced vigor, wilting, twig death, and dieback, were collected. A cross-section of diseased branches revealed mostly brown V or U-shaped cankers of hard consistency. Branches were cut, and pieces of cankers were surface sterilized in 96% ethanol for 3 s and briefly flamed. Small pieces of wood (5 mm2) from the edge of cankered tissues were placed on Potato Dextrose Agar (2% PDA) amended with 0.1% Igepal CO-630 and incubated at 25°C for five days in the dark (Díaz and Latorre 2014). Pure cultures were obtained by transferring a hyphal tip from growing colonies to fresh PDA media. Eight pure cultures (NP-Haz01 to NP-Haz08) developed dark to olive-brown fast-growing colonies with scarce aerial mycelium after seven days at 25°C on PDA under near-UV light. These isolates showed a dark-olive color on the reverse side of Petri dishes and developed abundant, aggregated, and dark-brown globose pycnidia after 21 days at 25°C. Conidia were hyaline, aseptate, ellipsoidal, densely granulate, externally smooth, and thin-walled dark, that measured (9.5-) 15.5 ±1.2 (-17.3) x (5.1-) 7.2 ± 0.6 (-9.1) µm (n = 30), with a length/width ratio of 2.15. These isolates were tentatively identified morphologically as Neofusicoccum sp. Molecular identification was performed using ITS1/ITS4, Bt2a/Bt2b and EF1-728F/EF1-986R primers of the internal transcribed spacer (ITS1-5.8S-ITS2) region, a portion of the beta-tubulin (BT) and part of the translation elongation factor (EF1-) genes, respectively (Dissanayake et al. 2015). A MegaBlast search in GenBank showed a 99% similarity to isolate CMW9081, the ex-type of Neofusicocum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips. The sequences were added to GenBank (OR393855 to OR393857 for ITS; OR400688 to OR400690 for BT; OR400691 to OR400693 for EF1-). Pathogenicity of three isolates (NP-Haz02, NP-Haz04, NP-Haz09) was studied on freshly made pruning wounds on attached branches of 3-year-old and one-year-old of European hazelnut cv. Tonda Di Giffoni in the San Rafael field. Fifteen pruning wounds were inoculated with 40 µL conidial suspension (105 conidia/mL) of each isolate of N. parvum. Sterile distilled water was used as a control treatment (n=15 branches) for branches of 3-year-olds and one-year-olds. Both pathogenicity tests were repeated once. Attached branches of 3-year-olds (6 months of incubation) and one-year-olds (4 months of incubation), developed necrotic streaks and cankers with a mean length of 33 to 82 mm and 25 to 51 mm, respectively. No necrotic streaks were observed in the branches treated with water. Neofusicoccum parvum was reisolated only from symptomatic tissues of inoculated branches, and morphological and molecularly (EF1-) identified, thus fulfilling Koch's postulates. Previously, other Botryosphaeriaceae spp. as Diplodia coryli (Guerrero and Pérez 2012) and D. mutila (Moya-Elizondo et al. 2023) have been obtained from canker and dieback of hazelnut in Chile. Recently, N. parvum was reported causing nut rot in hazelnuts in Italy (Wagas et al. 2022). To our knowledge, this is the first report of N. parvum causing canker and branch dieback of hazelnut trees in Chile and worldwide. |