Gaussian and Gaussian-pulsed-like Fermi velocity graphene structures.

Autor: García-Cervantes H; Tecnologías Emergentes Industriales e Informáticas, Universidad Tecnológica de León, Blvd. Universidad Tecnológica 225, San Carlos la Roncha, 37670 León, Guanajuato, Mexico., Escalera Santos GJ; Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Ciudad Universitaria, Calz. Emiliano Zapata Km. 8, Loma Bonita, 29050 Tuxtla Gutiérrez, Chiapas, Mexico., García-Rodríguez FJ; Departamento de Ingeniería Mecatrónica, Tecnológico Nacional de México/Instituto Tecnológico de Celaya, Antonio García Cubas Pte #600 esq. Av. Tecnológico, Celaya, Guanajuato 38010, Mexico., Rodríguez-González R; Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Circuto Marie Curie S/N, Parque de Ciencia y Tecnología QUANTUM Ciudad del Conocimiento, 98160 Zacatecas, Zacatecas, Mexico., Rodríguez-Vargas I; Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Circuto Marie Curie S/N, Parque de Ciencia y Tecnología QUANTUM Ciudad del Conocimiento, 98160 Zacatecas, Zacatecas, Mexico.
Jazyk: angličtina
Zdroj: Journal of physics. Condensed matter : an Institute of Physics journal [J Phys Condens Matter] 2023 Nov 07; Vol. 36 (6). Date of Electronic Publication: 2023 Nov 07.
DOI: 10.1088/1361-648X/ad07f2
Abstrakt: Gaussian and Gaussian-related structures are quite attractive due to its versatility to modulate the electronic transport, including its possibility as electron filters. Here, we show that these non-conventional profiles are not the exception when dealing with Fermi velocity barriers in monolayer graphene. In particular, we show that Gaussian Fermi velocity graphene barriers (G-FVGBs) and Gaussian-pulsed-like Fermi velocity graphene superlattices (GPL-FVGSLs) can serve as electron band-pass filters and oscillating conductance structures. We reach this conclusion by theoretically studying the transmission and transport properties of the mentioned structures. The study is based on the continuum model, the transfer matrix method and the Landauer-Büttiker formalism. We find nearly flat transmission bands or pass bands for G-FVGBs modulable through the system parameters. The pass bands improve as the maximum ratio of Fermi velocities (ξmax) increases, however its omnidirectional range is reduced. These characteristics result in a decaying conductance (integrated transmission) withξmax. The integrated transmission remains practically unaltered with the size of the system due to the saturation of the electron pass band filtering. In the case of GPL-FVGSLs the GPL profile results in regions of high transmission probability that can merge as flat transmission minibands if the pulse fraction and the superlattice parameters are appropriately tuned. The GPL profile also results in conductance (integrated transmission) oscillations that can be multiplied or reduced in number by adjusting the pulse fraction as well as the superlattice parameters.
(© 2023 IOP Publishing Ltd.)
Databáze: MEDLINE