Ultra-thin polymer foil cryogenic window for antiproton deceleration and storage.

Autor: Latacz BM; CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland.; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan., Arndt BP; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany.; GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany., Devlin JA; CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland.; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan., Erlewein SR; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany., Fleck M; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.; Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-0041, Japan., Jäger JI; CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland.; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany., Micke P; CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland.; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany., Umbrazunas G; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.; Eidgenössische Technische Hochschule Zürich, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland., Wursten E; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan., Abbass F; Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany., Schweitzer D; Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany., Wiesinger M; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany., Will C; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany., Yildiz H; Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany., Blaum K; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany., Matsuda Y; Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-0041, Japan., Mooser A; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany., Ospelkaus C; Institut für Quantenoptik, Leibniz Universität, Welfengarten 1, D-30167 Hannover, Germany.; Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany., Smorra C; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.; Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany., Sótér A; Eidgenössische Technische Hochschule Zürich, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland., Quint W; GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany., Walz J; CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland.; Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany.; Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, Staudingerweg 18, D-55128 Mainz, Germany., Yamazaki Y; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan., Ulmer S; CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland.; RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Jazyk: angličtina
Zdroj: The Review of scientific instruments [Rev Sci Instrum] 2023 Oct 01; Vol. 94 (10).
DOI: 10.1063/5.0167262
Abstrakt: We present the design and characterization of a cryogenic window based on an ultra-thin aluminized biaxially oriented polyethylene terephthalate foil at T < 10 K, which can withstand a pressure difference larger than 1 bar at a leak rate <1×10-9 mbar l/s. Its thickness of ∼1.7 μm makes it transparent to various types of particles over a broad energy range. To optimize the transfer of 100 keV antiprotons through the window, we tested the degrading properties of different aluminum coated polymer foils of thicknesses between 900 and 2160 nm, concluding that 1760 nm foil decelerates antiprotons to an average energy of 5 keV. We have also explicitly studied the permeation as a function of coating thickness and temperature and have performed extensive thermal and mechanical endurance and stress tests. Our final design integrated into the experiment has an effective open surface consisting of seven holes with a diameter of 1 mm and will transmit up to 2.5% of the injected 100 keV antiproton beam delivered by the Antiproton Decelerator and Extra Low ENergy Antiproton ring facility of CERN.
(© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).)
Databáze: MEDLINE