The genus Balanophora J. R. Forst. & G. Forst. - Its use in traditional medicine, phytochemistry, and pharmacology: A review.

Autor: Mutinda ES; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China., Zhang DJ; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China., Muema FW; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China., Mkala EM; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China., Waswa EN; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China., Odago WO; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China., Onyango Ochieng C; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China., Gichua MK; Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya., Muchuku JK; Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya., Kamande E; Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya., Hu GW; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China. Electronic address: guangwanhu@wbgcas.cn.
Jazyk: angličtina
Zdroj: Journal of ethnopharmacology [J Ethnopharmacol] 2024 Jan 30; Vol. 319 (Pt 3), pp. 117276. Date of Electronic Publication: 2023 Oct 20.
DOI: 10.1016/j.jep.2023.117276
Abstrakt: Ethnopharmacological Relevance: Natural products, particularly medicinal plants, have been utilized in traditional medicine for millennia to treat various diseases. The genus Balanophora (Balanophoraceae) consists of 23 accepted species. These species are the most controversial flowering plants, with highly reduced morphologies and are found parasitizing on the roots of their host. They have been used in traditional medicine as a remedy for stomach pain, detumescence, uterine prolapse, wounds, syphilis, gonorrhea, treating injuries from falls, and other conditions. However, there is no review of this genus on its traditional uses, phytochemistry, and pharmacology.
Aim: The present narrative review discusses the scientific data supporting the traditional uses of Balanophora species. The available information on its botanical properties, traditional uses, chemical contents, pharmacological activities, and toxicity was summarized to help comprehend current research and offer a foundation for future research.
Materials and Methods: The materials used in combining data on the genus Balanophora comprises online sources such as Web of Science, Google Scholar, Science Direct, and Chinese National Knowledge Infrastructure (CNKI) for Chinese-related materials. World Flora online was used in validating the scientific names of this genus while ChemBio Draw Ultra Version 22.2 software was employed in drawing the phytochemical compounds.
Results: Nine Balanophora species including B. harlandii, B. japonica, B. polyandra, B. fungosa, B. fungosa subsp. indica, B. laxiflora, B. abbreviata, B. tobiracola, and B. involucrata have been documented as vital sources of traditional medicines in different parts of Asia. A total of 159 secondary metabolites have been isolated and identified from the ten species of this genus comprising tannins, flavonoids, sterols, lignans, chalcones, terpenes, and phenylpropanoids. Among these compounds, tannins, lignans, terpenoids, chalcones and phenolic acids contribute to the pharmacological activities of the species in this genus with several biological activities both in vitro and in vivo such as anti-inflammatory, anti-oxidant, hypoglycemic activity, cytotoxicity, anti-microbial, melanin synthesis etc. CONCLUSION: This review summarizes the available literature on the traditional uses, pharmacological properties, and phytoconstituents of Balanophora species indicating that they contain fascinating chemical compounds with diverse biological activities. The traditional uses of the species in this genus have been confirmed by scientific data such as antimicrobial, hemostatic effect, gastroprotective activity and others. However, many species in this genus are yet unknown in terms of their botanical uses, chemical composition and biological activities. Thus, more research into the scientific connections between traditional medicinal uses and pharmacological activities, mode of action of the isolated bioactive constituents, and toxicity of other Balanophora species is needed to determine their efficacy and therapeutic potential for safe clinical application.
Competing Interests: Declaration of Competing interest Authors declare no conflicts of interests.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE